首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we discuss the recent work of Lin and Zhang on the Liouville system of mean field equations: $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} ({\frac{{h_j}e^{u_{j}}}{\int_{M}{h_{j}e^{u_{j}}}}-{\frac{1}{|M|}}})=0\,\, \quad{\rm on}\, M,$$ where M is a compact Riemann surface and |M| is the area, or $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} \frac{{h_j}e^{u_{j}}}{\int_{\Omega}{h_{j}e^{u_{j}}}}=0\,\, \quad{\rm in}\, \Omega,$$ $${u_j}=0,\,\, \quad{\rm on}\, \partial\Omega, $$ where ?? is a bounded domain in ${\mathbb{R}^2}$ . Among other things, we completely determine the set of non-critical parameters and derive a degree counting formula for these systems.  相似文献   

2.
In this paper we study the number of the boundary single peak solutions of the problem $$\left\{\begin{array}{ll} -\varepsilon^{2} \Delta u + u = u^{p}, \quad {\rm in}\, \Omega \\ u > 0, \quad\quad\quad\quad\quad\quad {\rm in}\, \Omega \\ \frac{\partial u}{\partial {\nu}} = 0, \quad\quad\quad\quad\quad\,\,\, {\rm on}\, \partial {\Omega}\end{array}\right.$$ for ${\varepsilon}$ small and p subcritical. Under some suitable assumptions on the shape of the boundary near a critical point of the mean curvature, we are able to prove exact multiplicity results. Note that the degeneracy of the critical point is allowed.  相似文献   

3.
We discuss existence and non-existence of positive solutions for the following system of Hardy and Hénon type: $$\left\{\begin{array}{ll} {-\Delta v=|x|^{\alpha}u^{p},\,-\Delta u=|x|^{\beta}v^{q} \,\,{\rm in}\, \Omega,}\\ {u=v=0 \quad\quad\quad\quad\quad\quad\quad\quad\quad{\rm on}\, \partial \Omega}, \end{array}\right.$$ where ${\Omega\ni 0}$ is a bounded domain in ${\mathbb{R}^{N}}$ , N ≥ 3, p, q > 1, and α, β > ?N. We also study symmetry breaking for ground states when Ω is the unit ball in ${\mathbb{R}^{N}}$ .  相似文献   

4.
We study existence, uniqueness and asymptotic behavior near the boundary of solutions of the problem $$\left\{\begin{array}{ll}-F(D^{2} u) + \beta (u) = f \quad {\rm in} \, \Omega, \\ u = + \infty \quad \quad \quad \quad \quad \quad \,\,\,\, {\rm on}\, \partial \Omega, \end{array} \right.\quad \quad \quad \quad \quad {\rm (P)}$$ where Ω is a bounded smooth domain in ${{\mathbb R}^N, N >1 , F}$ is a fully nonlinear elliptic operator and β is a nondecreasing continuous function. Assuming that β satisfies the Keller–Osserman condition, we obtain existence results which apply to ${f \in L^\infty_{loc}(\Omega)}$ or f having only local integrability properties where viscosity solutions are well defined, i.e. ${f \in L^N_{loc}(\Omega)}$ . Besides, we find the asymptotic behavior near the boundary of solutions of (P) for a wide class of functions ${f \in \mathcal{C}(\Omega)}$ . Based in this behavior, we also prove uniqueness.  相似文献   

5.
We consider the following q-eigenvalue problem for the p-Laplacian $$\left\{\begin{array}{ll}-{\rm div}\big( |\nabla u|^{p-2}\nabla u\big) = \lambda \|u\|_{L^{q}(\Omega)}^{p-q}|u|^{q-2}u \quad \quad\, {\rm in} \,\,\,\, \Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,\,{\rm on } \,\,\,\, \partial\Omega,\end{array}\right.$$ where \({\lambda\in\mathbb{R},}\) p > 1, Ω is a bounded and smooth domain of \({\mathbb{R}^{N},}\) N > 1, \({1\leq q < p^{\star}}\) , \({p^{\star}=\frac{Np}{N-p}}\) if p < N and \({p^{\star}=\infty}\) if \({p\geq N.}\) Let λ q denote the first q-eigenvalue. We prove that in the super-linear case, \({p < q < p^{\star},}\) there exists \({\epsilon_{q}>0}\) such that if \({\lambda\in(\lambda_{q},\lambda _{q}+\epsilon_{q})}\) is a q-eigenvalue, then any corresponding q-eigenfunction does not change sign in Ω. As a consequence of this result we obtain, in the super-linear case, the isolatedness of λ q for those Ω such that the Lane–Emden problem $$\left\{\begin{array}{ll}-{\rm div}\big(|\nabla u|^{p-2}\nabla u\big) = |u|^{q-2}u \qquad\quad\quad\quad \,\,{\rm in}\,\,\,\Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,{\rm on } \,\,\, \partial\Omega,\end{array}\right.$$ has exactly one positive solution.  相似文献   

6.
Using variational methods, we study the existence and nonexistence of nontrivial weak solutions for the quasilinear elliptic system $$\left\{\begin{array}{ll}- {\rm div}(h_1(|\nabla u|^2)\nabla u) = \frac{\mu}{|x|^2}u + \lambda F_u(x, u, \upsilon)\quad {\rm in}\,\Omega,\\- {\rm div}(h_2(|\nabla \upsilon|^2)\nabla \upsilon) = \frac{\mu}{|x|^2}\upsilon + \lambda F_\upsilon(x,u,\upsilon)\quad {\rm in}\,\Omega,\\u = \upsilon = 0 \qquad \qquad \qquad \qquad \qquad \qquad {\rm in}\, \partial\Omega, \end{array}\right.$$ where \({\Omega \subset \mathbb{R}^N,N \geq 3}\) , is a bounded domain containing the origin with smooth boundary \({\partial \Omega ; h_i, i = 1, 2}\) , are nonhomogeneous potentials; \({(F_u, F_v) = \nabla F}\) stands for the gradient of a sign-changing C 1-function \({F : \Omega \times \mathbb{R}^2 \to \mathbb{R}}\) in the variable \({{w = (u, v) \in \mathbb{R}^2}}\) ; and λ and μ are parameters.  相似文献   

7.
In this article, we prove that the following weighted Hardy inequality $$\begin{array}{ll}\big(\frac{|{d-p}|}{p}\big)^{p}\, \int\limits_{\Omega}\, \frac{|{u}|^{p}}{|{x}|^{p}}\;d\mu \\ \quad \quad \le \int\limits_{\Omega}\,|{\nabla u}|^{p}\;d\mu+ \big(\frac{|{d-p}|}{p}\big)^{p-1}\,\textrm{sgn}(d-p)\,\int\limits_{\Omega}|{u}|^{p}\,\frac{(x^{t}Ax)^{p/2}}{|{x}|^{p}}\; d\mu \quad \quad \quad (1) \end{array}$$ holds with optimal Hardy constant ${\big(\frac{|d-p|}{p}\big)^{p}}$ for all ${u \in W^{1,p}_{\mu,0}(\Omega)}$ if the dimension d ≥ 2, 1 < p < d, and for all ${u \in W^{1,p}_{\mu,0}(\Omega{\setminus}\{0\})}$ if p > d ≥ 1. Here we assume that Ω is an open subset of ${\mathbb{R}^{d}}$ with ${0 \in \Omega}$ , A is a real d × d-symmetric positive definite matrix, c > 0, and $$ d \mu: = \rho(x) \,dx \qquad \textrm{with} \quad \rho(x) = c \cdot \exp(-\frac{1}{p}(x^{t}Ax)^{p/2}), \quad x \in\Omega.\quad \quad (2) $$ If p > d ≥ 1, then we can deduce from (1) a weighted Poincaré inequality on ${W^{1,p}_{\mu,0}(\Omega \setminus\{0\})}$ . Due to the optimality of the Hardy constant in (1), we can establish the nonexistence (locally in time) of positive weak solutions of a p-Kolmogorov parabolic equation perturbed by a singular potential in dimension d = 1, for 1 < p <  + ∞, and when Ω =  ]0, + ∞[.  相似文献   

8.
Let Ω be a bounded domain in ${\mathbb{R}^2}$ with smooth boundary. We consider the following singular and critical elliptic problem with discontinuous nonlinearity: $$(P_\lambda)\left \{\begin{array}{ll} - \Delta u = \lambda \left(\frac{m(x, u) e^{\alpha{u}^2}}{|x|^{\beta}} + u^{q}g(u - a)\right),\quad{u} > 0 \quad {\rm in} \quad \Omega\\u \quad \quad = 0\quad {\rm on} \quad \partial \Omega \end{array}\right.$$ where ${0\leq q < 1 ,0< \alpha\leq4\pi}$ and ${\beta \in [0, 2)}$ such that ${\frac{\beta}{2} + \frac{\alpha}{4\pi} \leq 1}$ and ${{g(t - a) = \left\{\begin{array}{ll}1, t \leq a\\ 0, t > a.\end{array}\right.}}$ Under the suitable assumptions on m(x, t) we show the existence and multiplicity of solutions for maximal interval for λ.  相似文献   

9.
Let ?? be an open, bounded domain in ${\mathbb{R}^n\;(n \in \mathbb{N})}$ with smooth boundary ???. Let p, q, r, d 1, ?? be positive real numbers and s be a non-negative number which satisfies ${0 < \frac{p-1}{r} < \frac{q}{s+1}}$ . We consider the shadow system of the well-known Gierer?CMeinhardt system: $$ \left \{ \begin{array}{l@{\quad}l} \displaystyle{u_t = d_1\Delta u - u + \frac{u^p}{\xi^q}}, & \quad {\rm in}\;\Omega \times (0,T), \\ \displaystyle{\tau \xi_t = -\xi + \frac{1}{|\Omega|} \int\nolimits_\Omega\frac{u^r}{\xi^s} {\rm d}x}, & \quad {\rm in}\;(0,T), \\ \displaystyle{\frac{\partial u}{\partial \nu} =0}, & \quad {\rm on}\;\partial \Omega \times (0,T), \\ \displaystyle{\xi(0) = \xi_0 >0 , \quad u(\cdot,0) = u_0(\cdot)} \geq 0 & \quad {\rm in}\;\Omega. \end{array} \right. $$ We prove that solutions of this system exist globally in time under some conditions on the coefficients. Our results are based on a priori estimates of the solutions and improve the global existence results of Li and Ni in [4].  相似文献   

10.
We study the problem $$ \left\{\begin{array}{ll} {-\varepsilon^{2}\mathcal{M}^+_{\lambda,\Lambda}(D^{2}u) = f (x, u)} \quad\; {\rm in} \; \Omega,\\ {u = 0} \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad {\rm on} \; \partial{\Omega}, \end{array} \right.$$ where Ω is a smooth bounded domain in ${\mathbb{R}^{N},N > 2,}$ and show it possesses nontrivial solutions for small values of ε provided f is a nonnegative continuous function which has a positive zero. The multiplicity result is based on degree theory together with a new Liouville type theorem for ${-{M}^+_{\lambda,\Lambda}(D^{2}u) = f(u)}$ in ${\mathbb{R}^{N}}$ for nonnegative nonlinearities with zeros.  相似文献   

11.
In [8 Chapter 4.3] Kirchheim and Preiss gave an example of a set K consisting of five 2 × 2 symmetric matrices without rank-one connections, for which there exists a Lipschitz mapping u satisfying ${Du \in K}$ . In the present paper we construct the rank-one convex hull of K. As a corollary we obtain that for each ${F \in {\rm int}\,K^{rc}}$ there exists a Lipschitz mapping u satisfying $$Du \in K\quad{\rm and}\quad u(x) = Fx\,{\rm for}\,x\,\in\,{\partial} \Omega \,.$$ Moreover, we show that the rank-one convex hull of K and the quasiconvex hull of K are equal.  相似文献   

12.
Let Ω denote the upper half-plane ${\mathbb{R}_+^2}$ or the upper half-disk ${D_{\varepsilon}^+\subset \mathbb{R}_+^2}$ of center 0 and radius ${\varepsilon}$ . In this paper we classify the solutions ${v\in\;C^2(\overline{\Omega}\setminus\{0\})}$ to the Neumann problem $$\left\{\begin{array}{lll}{\Delta v+2 Ke^v=0\quad {\rm in}\,\Omega\subseteq \mathbb{R}^2_+=\{(s, t)\in \mathbb{R}^2: t >0 \},}\\ {\frac{\partial v}{\partial t}=c_1e^{v/2}\quad\quad\quad{\rm on}\,\partial\Omega\cap\{s >0 \},}\\ {\frac{\partial v}{\partial t}=c_2e^{v/2}\quad\quad\quad{\rm on}\,\partial\Omega\cap\{s <0 \},}\end{array}\right.$$ where ${K, c_1, c_2 \in \mathbb{R}}$ , with the finite energy condition ${\int_{\Omega} e^v < \infty}$ As a result, we classify the conformal Riemannian metrics of constant curvature and finite area on a half-plane that have a finite number of boundary singularities, not assumed a priori to be conical, and constant geodesic curvature along each boundary arc.  相似文献   

13.
Of concern is the nonlinear hyperbolic problem with nonlinear dynamic boundary conditions $$\left\{ \begin{array}{lll} u_{tt} ={\rm div} (\mathcal{A} \nabla u)-\gamma (x,u_t), && \quad {\rm in} \; (0, \infty) \times \Omega,\\ u(0, \cdot)=f, \, u_t(0,\cdot)=g, && \quad {\rm in}\; \Omega, \\ u_{tt} + \beta \partial^ \mathcal{A}_\nu u+c(x)u+ \delta (x,u_t)-q \beta \Lambda_{\rm LB} u=0,&& \quad {\rm on} \;(0, \infty ) \times \partial \Omega . \end{array}\right. $$ for t ≥  0 and ${x \in \Omega \subset \mathbb{R}^N}$ ; the last equation holds on the boundary . Here ${\mathcal{A}= \{a_{ij}(x)\}_{ij}}$ is a real, hermitian, uniformly positive definite N × N matrix; ${\beta \in C(\partial \Omega)}$ , with β > 0; ${\gamma:\Omega \times \mathbb{R} \to \mathbb{R}; \delta:\partial \Omega \times \mathbb{R} \to \mathbb{R}; \,c:\partial \Omega \to \mathbb{R}; \, q \ge 0, \Lambda_{\rm LB}}$ is the Laplace–Beltrami operator on , and ${\partial^\mathcal{A}_\nu u}$ is the conormal derivative of u with respect to ${\mathcal{A}}$ ; everything is sufficiently regular. We prove explicit stability estimates of the solution u with respect to the coefficients ${\mathcal{A},\,\beta,\,\gamma,\,\delta,\,c,\,q}$ , and the initial conditions fg. Our arguments cover the singular case of a problem with q = 0 which is approximated by problems with positive q.  相似文献   

14.
We consider the following singularly perturbed nonlinear elliptic problem: $$\begin{array}{ll}-\varepsilon^{2}\Delta u + u=f(u),\; u > 0\, {\rm on}\, \Omega,\; u = 0\, {\rm on}\, \partial \Omega,\end{array}$$ where Ω is a bounded domain in ${\mathbb{R}^N (N \ge 3)}$ with a boundary ${\partial \Omega \in C^2}$ and the nonlinearity f is of critical growth. In this paper, we construct a solution ${u_\varepsilon}$ of the above problem which exhibits one spike near a maximum point of the distance function from the boundary ?Ω under a critical growth condition on f. Our result complements the study made in [9] in the sense that, in that paper, only the subcritical growth was considered.  相似文献   

15.
The aim of this paper is to investigate the existence of solutions of the semilinear elliptic problem $$\left\{\begin{array}{ll} -\Delta u\ =\ p(x, u) + \varepsilon g(x, u)\quad {\rm in}\,\, \Omega, \\ u=0 \quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\,\,\,{\rm on}\,\, \partial\Omega, \end{array} \right. \quad\quad\quad(0.1) $$ where Ω is an open bounded domain of ${\mathbb{R}^N}$ , ${\varepsilon\in\mathbb{R}, p}$ is subcritical and asymptotically linear at infinity, and g is just a continuous function. Even when this problem has not a variational structure on ${H^1_0(\Omega)}$ , suitable procedures and estimates allow us to prove that the number of distinct critical levels of the functional associated to the unperturbed problem is “stable” under small perturbations, in particular obtaining multiplicity results if p is odd, both in the non-resonant and in the resonant case.  相似文献   

16.
We study the existence of multiple sign-changing solutions of the problem $$-d^2 \Delta u + u =f(u)\quad {\rm in}\,\Omega,\quad\dfrac{\partial u}{\partial \nu}=0 \quad {\rm in}\,\partial \Omega,$$ where d > 0 is small enough, Ω is a domain in ${\mathbb{R}^{N}}$ (N ≥ 2) whose boundary is nonempty, compact and smooth and ${f \in C(\mathbb{R},\mathbb{R})}$ is a function satisfying a subcritical growth condition. We give lower estimates of the number of the sign-changing solutions by the category of a set related to the configuration space ${\{(x,y)\in\partial\Omega\times\partial\Omega:x \neq y\}}$ of the boundary ?Ω.  相似文献   

17.
We study the following nonlinear elliptic system of Lane–Emden type $$\left\{\begin{array}{ll} -\Delta u = {\rm sgn}(v) |v| ^{p-1} \qquad \qquad \qquad \; {\rm in} \; \Omega , \\ -\Delta v = - \lambda {\rm sgn} (u)|u| \frac{1}{p-1} + f(x, u)\; \; {\rm in}\; \Omega , \\ u = v = 0 \qquad \qquad \qquad \quad \quad \;\;\;\;\; {\rm on}\; \partial \Omega , \end{array}\right.$$ where ${\lambda \in \mathbb{R}}$ . If ${\lambda \geq 0}$ and ${\Omega}$ is an unbounded cylinder, i.e., ${\Omega = \tilde \Omega \times \mathbb{R}^{N-m} \subset \mathbb{R}^{N}}$ , ${N - m \geq 2, m \geq 1}$ , existence and multiplicity results are proved by means of the Principle of Symmetric Criticality and some compact imbeddings in partially spherically symmetric spaces. We are able to state existence and multiplicity results also if ${\lambda \in \mathbb{R}}$ and ${\Omega}$ is a bounded domain in ${\mathbb{R}^{N}, N \geq 3}$ . In particular, a good finite dimensional decomposition of the Banach space in which we work is given.  相似文献   

18.
We deal with the following parabolic problem, $$(P)\left\{\begin{array}{lll} u_t - \Delta{u} + |\nabla{u}|^q \quad=\quad \lambda{g}(x)u + f(x, t),\quad u > 0 \; {\rm in} \; \Omega \; \times \; (0, T),\\ \qquad\quad\quad\; u(x, t) \quad=\quad 0 \quad{\rm on}\; {\partial}{\Omega}\; \times ; (0, T),\\ \qquad\quad\quad\; u(x, 0) \quad=\quad u_{0}(x), \quad x \in {\Omega},\end{array}\right.$$ where is a bounded regular domain or ${\Omega = \mathbb{R}^N}$ , ${1 < q \leq 2, \lambda > 0\; {\rm and}\; f \geq 0, u_{0} \geq 0}$ are in a suitable class of functions. We give assumptions on g with respect to q for which for all λ >  0 and all ${f \in L^1(\Omega_T ), f \geq 0}$ , problem (P) has a positive solution. Under some additional conditions on the data, the Cauchy problem and the asymptotic behavior of the solution are also considered.  相似文献   

19.
In this paper we deal with local estimates for parabolic problems in ${\mathbb{R}^N}$ with absorbing first order terms, whose model is $$\left\{\begin{array}{l@{\quad}l}u_t- \Delta u +u |\nabla u|^q = f(t,x) \quad &{\rm in}\, (0,T) \times \mathbb{R}^N\,,\\u(0,x)= u_0 (x) &{\rm in}\, \mathbb{R}^N \,,\quad\end{array}\right.$$ where ${T >0 , \, N\geq 2,\, 1 < q \leq 2,\, f(t,x)\in L^1\left( 0,T; L^1_{\rm loc} \left(\mathbb{R}^N\right)\right)}$ and ${u_0\in L^1_{\rm loc}\left(\mathbb{R}^{N}\right)}$ .  相似文献   

20.
We consider the following anisotropic sinh-Poisson equation $${\rm div} (a(x) \nabla u)+ 2\varepsilon^2 a(x) {\rm sinh}\,u=0\ \ {\rm in}\ \Omega, \quad u=0 \ \ {\rm on}\ \partial \Omega,$$ where ${\Omega \subset \mathbb{R}^2}$ is a bounded smooth domain and a(x) is a positive smooth function. We investigate the effect of anisotropic coefficient ${a(x)}$ on the existence of bubbling solutions. We show that there exists a family of solutions u ?? concentrating positively and negatively at ${\bar{x}}$ , a given local critical point of a(x), for ?? sufficiently small, for which with the property $$2\varepsilon^2a(x){\rm sinh} u_\varepsilon \rightharpoonup 8\pi\sum\limits_{j=1}^{m}b_j\delta_{\bar{x}},$$ where ${b_j=\pm 1}$ . This result shows a striking difference with the isotropic case (a(x) ?? Constant) in Bartolucci and Pistoia (IMA J Appl Math 72(6):706?C729, 2007), Jost et?al. (Calc Var Partial Differ Equ 31:263?C276, 2008) and Esposito and Wei (Calc Var Partial Differ Equ 34:341?C375, 2009).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号