首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
付萍  袁若  柴雅琴  殷冰  曹淑瑞  陈时洪  李宛洋 《化学学报》2008,66(15):1796-1802
在金电极表面修饰一层L-半胱氨酸,再利用静电吸附作用固定纳米普鲁士蓝(nano-PB),然后利用壳聚糖-纳米金复合膜将葡萄糖氧化酶(GOD)固定于修饰电极表面,制成新型的葡萄糖传感器.通过交流阻抗技术,循环伏安法和计时电流法考察了电极的电化学特性.在优化的实验条件下,该传感器在葡萄糖浓度为3.0×10-6~1.0×10-3 mol/L范围内有线性响应,检测下限为1.6×10-6 mol/L.此外该传感器具有响应快、稳定性好和选择性良好的特点,能有效排除常见干扰物质如抗坏血酸、尿酸等对测定的影响.  相似文献   

2.
将Nafion 膜固定在金电极(Au)表面, 通过静电吸附和共价键合作用将硫堇(Thi)和纳米金颗粒(nano-Au)层层自组装到Nafion膜修饰的金电极表面. 再通过形成的纳米金单层吸附癌胚抗体(anti-CEA), 最后用辣根过氧化物酶(HRP)代替牛血清白蛋白(BSA)封闭电极上的非特异性吸附位点, 并同时起到放大响应电流信号的作用, 从而制得高灵敏、高稳定电流型酶-癌胚抗原(CEA)免疫传感器. 通过循环伏安和交流阻抗考察了电极表面的电化学特性, 并对该免疫传感器的性能进行了详细的研究. 该传感器对CEA检测的线性范围为2.5~80.0 ng/mL, 检测限为0.90 ng/mL.  相似文献   

3.
把金纳米颗粒加入到生物酶膜中制备葡萄糖生物传感器,分析了电极的反应机理和金纳米颗粒对电极电流响应的影响,并进行了电极的性能测定。试验表明,引入金纳米粒子可显著提高电极的响应灵敏度.制备的传感器抗干扰性强,稳定性高,成本较低,操作简便.  相似文献   

4.
通过种子生长法合成Au@Pt核壳结构纳米粒子,采用两相成膜法制备单层粒子膜,并转移获得Au@Pt核壳纳米粒子单层膜电极,该电极表面纳米粒子分布均匀,具有较大的比表面,对甲醇的氧化具有较好的电催化活性.研究表明,利用内核Au的长程电磁场增强效应,该单层膜表现出均匀且优良的表面增强拉曼散射(SERS)活性,适合作为基底在分子水平上研究表面的吸附和反应.获得了Au@Pt核壳纳米粒子单层膜表面甲醇电催化氧化过程的SERS光谱,为深入分析表面反应机理提供了实验依据.  相似文献   

5.
描述了测定过氧化氢的第三代电流型生物传感器。为了制备生物传感器,邻氨基苯甲酸(oABA)被电聚合到铂电极的表面形成具有抗干扰能力的静电排斥层。辣根过氧化物酶(HRP)通过纳米金(Nano-Au)的吸附固定到修饰了聚邻氨基苯甲酸及L-半胱氨酸的电极上。过氧化氢的测量是在相对于饱和甘汞电极的+20 mV处进行的。修饰好的电极具有快速的响应,优秀的再现性和灵敏度,宽的线性范围和低的干扰水平等特点。我们研究了温度和pH对电极响应的影响及传感器的稳定性。在优化的条件下,传感器对过氧化氢的线性范围是2.99×10-6到3.55×10-3 mol/L,灵敏度和检测下限分别为0.0177 A•L-1•mol-1和4.3×10-7 mol/L(S/N=3)。传感器不到10 s就可以达到响应的95%。  相似文献   

6.
采用基于核壳纳米粒子的壳层隔绝纳米粒子增强拉曼(SHINERS)以及Au纳米粒子增强技术, 对比研究了4-氰基吡啶(4-CNPy)在TiO2表面的吸附行为. 结果表明, 采用2种技术所获得的光谱存在明显的差别. 利用前者得到了4-CNPy在TiO2电极上随电极电位变化的吸附方式. 在电位为0时, 分子以吡啶环上的N垂直吸附; 随电位负移, 部分分子变为倾斜吸附, 且在电位为-1.0 V时倾斜角度变大. 在正电位区间, 分子始终以吡啶环上的N垂直吸附. 而采用Au纳米粒子滴加在TiO2电极上的方式, 则得到吸附在TiO2, Au及TiO2/Au复合结构上的总光谱信息.  相似文献   

7.
利用可逆-加成断裂链转移聚合得到全亲水性的嵌段共聚物(PEO-b-PNIPAM), 通过"grafting to"使其接枝到金纳米粒子表面. 通过透射电子显微镜、 紫外-可见吸收光谱、 能谱分析及动态光散射研究了杂化的金纳米粒子的壳层结构及温度响应行为. 实验结果表明, 得到核壳结构的金纳米粒子, 同时其壳层具有温度响应行为. 随着温度的升高, 其流体力学半径略有减小. 在整个升温过程中, 由于外层PEO链段的抑制作用, 没有发生粒子间的聚集.  相似文献   

8.
张金果  康天放  薛瑞  孙雪 《分析化学》2013,(9):1353-1358
将核壳型Fe3O4@Au磁性纳米粒子修饰在丝网印刷工作电极表面,再通过纳米金和微囊藻毒素-(亮氨酸-精氨酸)抗体(anti-MCLR)之间的吸附作用,将抗体固定于电极表面,以牛血清白蛋白(BSA)封闭非特异性吸附位点,制得了检测MCLR的电流型免疫传感器。该传感器基于直接竞争的免疫分析模式,以辣根过氧化物酶偶联的微囊藻毒素(MCLR-HRP)为标记物,用差分脉冲伏安法检测微囊藻毒素,在优化的实验条件下,此免疫传感器响应的峰电流值与微囊藻毒素浓度在0.79~12.9μg/L范围内呈良好的线性关系,检测限为0.38μg/L。对实际水样进行了微囊藻毒素的加标回收实验,回收率在95%~107%之间。此免疫传感器具有测定速度快、灵敏高、携带方便等优点。  相似文献   

9.
在聚乙烯吡啶修饰导电玻璃电极表面进行了金纳米粒子的二维单层结构组装,通过电沉积方法在金粒子表面制备了纳米汞壳层.研究结果表明,汞壳层的形成导致了内部金粒子表面等离子体共振的谱峰红移和强度衰减.吸附于汞壳表面的结晶紫分子因可承受被金核增强的电磁场,而使其拉曼散射得到极大的增强.  相似文献   

10.
以天青Ⅰ为介体的纳米金颗粒增强的葡萄糖传感器   总被引:2,自引:1,他引:1  
采用层层自组装的方法和异种电荷互相吸引的原理,将Nafion修饰在金电极上固载带正电荷的天青Ⅰ,并利用天青Ⅰ中的氨基固载纳米金,再通过纳米金将酶固定在金电极表面,制成了葡萄糖传感器.采用循环伏安法和交流阻抗法,研究了金电极表面组装各层之后的电化学特征,以及电极对葡萄糖的电化学催化作用. 结果表明,天青Ⅰ不仅可以固定酶和纳米金,而且还可以在酶和电极之间有效地传递电子.在优化的实验条件下,该传感器对葡萄糖响应的线性范围为5.1×10-6 ~4.0×10-3 mol/L,检出限(S/N=3)为1.0 μmol/L.该生物传感器显示出较好的稳定性和抗干扰能力,将其用于人体血清中葡萄糖的测定,结果令人满意.  相似文献   

11.
A novel amperometric glucose biosensor is presented in this article, which is based on the adsorption of glucose oxidase on gold‐platinum nanoparticle (AuPt NP)‐multiwalled carbon nanotube (MWNT) – ionic liquid (i.e., 1‐octyl‐3‐methylimidazolium hexafluorophosphate, [OMIM]PF6) composite. The gold‐platinum nanoparticles is prepared through direct electrodeposition. Owing to the synergistic action of AuPt nanoparticle, MWNT and [OMIM]PF6, the biosensor shows good response to glucose, with wide linear range (0.01 to 9.49 mM), short response time (3 s), and high sensitivity (3.47 μA mM−1). With the biosensor the determination of glucose in human serum is performed.  相似文献   

12.
In this work, an enzyme biosensor based on the immobilization of horseradish peroxidase (HRP) on SiO2/BSA/Au/thionine/nafion-modified gold electrode was fabricated successfully. Firstly, nafion was dropped on the surface of the gold electrode to form a nafion film followed by chemisorption of thionine (Thi) as an electron mediator via the ion-exchange interaction between the Thi and nafion. Subsequently, the SiO2/BSA/Au composite nanoparticles were assembled onto Thi film through the covalent bounding with the amino groups of Thi. Finally, HRP was immobilized on the SiO2/BSA/Au composite nanoparticles due to the covalent conjugation to construct an enzyme biosensor. The surface topographies of the SiO2/BSA/Au composite nanoparticles were investigated by using scanning electronic microscopy. The stepwise self-assemble procedure of the biosensor was further characterized by means of cyclic voltammetry and chronoamperometry. The enzyme biosensor showed high sensitivity, good stability and selectivity, a wide linear response to hydrogen peroxide (H2O2) in the range of 8.0 × 10-6 ∼ 3.72 × 10-3 mol/L, with a detection limit of 2.0 × 10-6 mol/L. The Michaelies-Menten constant KMapp K_M^{app} value was estimated to be 2.3 mM.  相似文献   

13.
A highly efficient enzyme immobilization method has been developed for electrochemical biosensors using polydopamine films with gold nanoparticles (AuNPs) embedded. This simple enzyme fabrication method can be performed in very mild conditions and stored in a long time with high bioactivity. The fabricated amperometric glucose biosensor exhibited a high and reproducible sensitivity, wide linear dynamic range and low limit of detection (LOD) (0.1 μmol·L?1). A low value of 1.5 mmol·L?1 for the apparent Michaelis‐Menten constant KappM was obtained. The high sensitivity, wide linear range, good reproducibility and stability make this biosensor a promising candidate for portable amperometric glucose biosensor.  相似文献   

14.
A novel glucose biosensor is presented as that based on a glassy carbon electrode modified with hollow gold nanoparticles (HGNs) and glucose oxidase. The sensor exhibits a better differential pulse voltammetric response towards glucose than the one based on conventional gold nanoparticles of the same size. This is attributed to the good biological conductivity and biocompatibility of HGNs. Under the optimal conditions, the sensor displays a linear range from 2.0?×?10?6 to 4.6?×?10?5?M of glucose, with a detection limit of 1.6?×?10?6?M (S/N?=?3). Good reproducibility, stability and no interference make this biosensor applicable to the determination of glucose in samples such as sports drinks.
Figure
A novel glucose biosensor was prepared based on glucose oxidase, hollow gold nanoparticles and chitosan modified glassy carbon electrode. The electrode showed a good response for the glucose. The sensor has been verified by the determination of glucose in sport drink  相似文献   

15.
A novel amperometric uric acid biosensor was fabricated by immobilizing uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi–CNTsNF) covering an electrodeposited layer of silver nanoparticles (AgNPs) on a gold electrode (uricase/Chi–CNTsNF/AgNPs/Au). The uric acid response was determined at an optimum applied potential of ?0.35 V vs Ag/AgCl in a flow-injection system based on the change of the reduction current for dissolved oxygen during oxidation of uric acid by the immobilized uricase. The response was directly proportional to the uric acid concentration. Under the optimum conditions, the fabricated uric acid biosensor had a very wide linear range, 1.0–400 μmol L?1, with a very low limit of detection of 1.0 μmol L?1 (s/n?=?3). The operational stability of the uricase/Chi–CNTsNF/AgNPs/Au biosensor (up to 205 injections) was excellent and the storage life was more than six weeks. A low Michaelis–Menten constant of 0.21 mmol L?1 indicated that the immobilized uricase had high affinity for uric acid. The presence of potential common interfering substances, for example ascorbic acid, glucose, and lactic acid, had negligible effects on the performance of the biosensor. When used for analysis of uric acid in serum samples, the results agreed well with those obtained by use of the standard enzymatic colorimetric method (P?>?0.05).
Figure
An amperometric uric acid biosensor was developed by immobilized uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi-CNTsNF) covering an electrodeposited silver nanoparticles layer (AgNPs) on gold electrode (uricase/Chi-CNTsNF/AgNPs/Au). The uric acid response was determined at an optimal applied potential of -0.35 V vs Ag/AgCl based on the change of the reduction current for dissolved oxygen.  相似文献   

16.
《Electroanalysis》2018,30(8):1642-1652
A newly developed amperometric glucose biosensor based on graphite rod (GR) working electrode modified with biocomposite consisting of poly (pyrrole‐2‐carboxylic acid) (PCPy) particles and enzyme glucose oxidase (GOx) was investigated. The PCPy particles were synthesized by chemical oxidative polymerization technique using H2O2 as initiator of polymerization reaction and modified covalently with the GOx (PCPy‐GOx) after activation of carboxyl groups located on the particles surface with a mixture of N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride (EDC) and N‐hydroxysuccinimide (NHS). Then the PCPy‐GOx biocomposite was dispersed in a buffer solution containing a certain amount of bovine serum albumin (BSA). The resulting biocomposite suspension was adsorbed the on GR electrode surface with subsequent solvent airing and chemical cross‐linking of the proteins with glutaraldehyde vapour (GR/PCPy‐GOx). It was determined that the current response of the GR/PCPy‐GOx electrodes to glucose measured at +300 mV vs Cl reference electrode was influenced by the duration of the PCPy particles synthesis, pH of the GOx solution used for the PCPy particles modification and the amount of immobilized PCPy‐GOx biocomposite. An optimal pH of buffer solution for operation of the biosensor was found to be 8.0. Detection limit was determined as 0.039 mmol L−1 according signal to noise ratio (S/N: 3). The proposed glucose biosensor was tested in human serum samples.  相似文献   

17.
Cysteamine core polyamidoamine G-4 dendron branched with β-cyclodextrins was chemisorbed on the surface of Au electrodes and further coated with Pt nanoparticles. Adamantane-modified glucose oxidase was subsequently immobilized on the nanostructured electrode surface by supramolecular association. This enzyme electrode was used to construct a reagentless amperometric biosensor for glucose, making use of the electrochemical oxidation of H2O2 generated in the enzyme reaction. The amperometric response of the biosensor was rapid (6 s) and a linear function of glucose concentration between 5 and 705 μmol?L?1. The biosensor had a low detection limit of 2.0 μmol?L?1, sensitivity of 197 mA?mol?1?L?cm?2, and retained 94 % of its initial response after storage for nine days at 4 °C.  相似文献   

18.
We have developed an enzymatic glucose biosensor that is based on a flat platinum electrode which was covered with electrophoretically deposited rhodium (Rh) nanoparticles and then sintered to form a large surface area. The biosensor was obtained by depositing glucose oxidase (GOx), Nafion, and gold nanoparticles (AuNPs) on the Rh electrode. The electrical potential and the fractions of Nafion and GOx were optimized. The resulting biosensor has a very high sensitivity (68.1 μA mM?1 cm?2) and good linearity in the range from 0.05 to 15 mM (r?=?0.989). The limit of detection is as low as 0.03 mM (at an SNR of 3). The glucose biosensor also is quite selective and is not interfered by electroactive substances including ascorbic acid, uric acid and acetaminophen. The lifespan is up to 90 days. It was applied to the determination of glucose in blood serum, and the results compare very well with those obtained with a clinical analyzer.
Figure
An enzymatic glucose biosensor was prepared based on rhodium nanoparticle modified Pt electrode and glucose oxidase immobilized in gold nanoparticles and Nafion composite film. The electrode showed a good response to glucose. The sensor was applied to the determination of glucose in blood serum.  相似文献   

19.
《Electroanalysis》2017,29(5):1267-1277
Graphite rod (GR) modified with electrochemicaly deposited gold nanoparticles (AuNPs) and adsorbed glucose oxidase (GOx) was used in amperometric glucose biosensor design. Enzymatic formation of polypyrrole (Ppy) on the surface of GOx/AuNPs/GR electrode was applied in order to improve analytical characteristics and stability of developed biosensor. The linear glucose detection range for Ppy/GOx/AuNPs/GR electrode was dependent on the duration of Ppy‐layer formation and the linear interval was extended up to 19.9 mmol L−1 after 21 h lasting synthesis of Ppy. The sensitivity of the developed biosensor was determined as 21.7 μA mM−1 cm−2, the limit of detection – 0.20 mmol L−1. Ppy/GOx/AuNPs/GR electrodes demonstrated advanced good stability (the t 1/2 was 9.8 days), quick detection of glucose (within 5 s) in the wide linear interval. Additionally, formed Ppy layer decreased the influence of electroactive species on the analytical signal. Developed biosensor is suitable for the determination of glucose in human serum samples.  相似文献   

20.
A study of biospecific interactions between lectins and glycoproteins using a quartz crystal microbalance biosensor with dissipation monitoring (QCM-D) was reported. Four lectins were covalently immobilised on the thiol-modified gold electrode of the QCM chips in order to obtain sensing surfaces. The frequency shift served as analytical signal and the dissipation shift provided additional information about the viscoelastic properties of the glycoprotein-lectin complex formed on the surface of the QCM chip. The working conditions of the assay were optimised. The interaction between different lectins and glycoproteins was characterised by specific frequency shifts and each glycoprotein displayed its own unique lectin-binding pattern. This lectin pattern can serve as a finger print for the discrimination between various glycoproteins. The biosensor enabled quantitative determination of glycoproteins in the concentration range of 50 μg mL−1 to 1 mg mL−1 with good linearity and R.S.D. of less than 6.0%. An additional advantage of the proposed biosensor was the possibility to re-use the same lectin surfaces during a long period of time (2 month) without changes in analytical response. This was experimentally achieved by the application of a proper regeneration solution (10 mM glycine-HCl, pH 2.5). The lectin-based quartz crystal microbalance technique is suitable both for rapid screening and for quantitative assay of serum glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号