首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用电位置换反应以及化学还原法制备了单分散PtNi 纳米粒子,循环伏安结果显示该纳米粒子在0.1mol·L-1硫酸介质中对CO的氧化表现出比本体Pt 电极更好的电催化活性. 以CO为探针分子,采用电化学原位红外光谱研究了PtNi 纳米粒子上的特殊红外光学性能. 结果表明,PtNi 纳米粒子无论是在玻碳电极还是在金电极上,均表现出对称的双极谱峰,同时给出很强的增强效应. 论文研究结果有助于进一步了解低维纳米材料特殊红外性能的本质.  相似文献   

2.
利用聚二甲基二烯丙基氯化铵(PDDA)非共价修饰的碳纳米管(CNTs)与PtCl62-之间的自发氧化还原作用, 制备了Pt 纳米颗粒(Pt NPs)/CNTs-PDDA复合催化剂. PDDA在该催化剂中具有三种作用: (1) 作为金属前驱体PtCl62-还原为Pt NPs 的还原剂; (2) 作为原位产生的Pt NPs 的稳定剂; (3) 在CNTs 表面形成保护膜抑制CNTs 在甲醇电催化氧化过程中的腐蚀. 采用傅里叶变换红外(FTIR)光谱、热重分析和拉曼光谱对CNTs-PDDA进行了表征, 表明PDDA通过π-π作用已成功覆盖在CNTs 表面, 并且修饰过程没有导致CNTs 结构的破坏. 采用透射电子显微镜(TEM)对Pt NPs/CNTs-PDDA 催化剂进行了表征, 结果表明, Pt NPs 均匀地分散在CNTs上, 平均粒径约2 nm, 且粒径分布范围窄. 用循环伏安法、计时电流法进一步考察了Pt NPs/CNTs-PDDA催化剂在酸性介质中对甲醇的电催化氧化的性能. 电化学测试结果表明, 与原始CNTs 负载的Pt NPs催化剂相比,Pt NPs/CNTs-PDDA催化剂具有更高的电化学活性表面积、电催化质量比活性和稳定性.  相似文献   

3.
运用电化学循环伏安、原位FTIR反射光谱和石英晶体微天平(EQCM)等方法研究了碱性介质中甲醇在Pt电极表面吸附和氧化行为. 结果表明: 甲醇电氧化与溶液酸碱性有密切的关系. 酸性介质中甲醇在Pt电极上的CV曲线有两个正向氧化峰, 而碱性介质中只有一个正向氧化峰, 第二个氧化峰的消失可能是由于碱性介质中Pt电极在高电位下形成高氧化态的氧物种毒化其表面引起的. 碱性介质中甲醇解离吸附产物的数量比酸性介质的明显减少, 对甲醇氧化的第一个氧化峰表现出更高的电催化活性. 目前实验条件下, 原位FTIR反射光谱检测到: 碱性介质中甲醇电氧化的最终产物是CO2和CO32-, 反应中间体主要为HCOO物种. 从电极表面质量定量变化的角度提供了甲醇反应机理的新数据.  相似文献   

4.
采用方波电位, 在10×10-3 mol·L-1 K2PtCl6+3×10-4 mol·L-1 PbAc2+0.5 mol·L-1 HClO4溶液中, 于本体Pt 电极上电沉积制备出枝晶状Pt 薄膜. 随着沉积时间的增加, 枝晶长度逐渐由400 nm增加到900 nm, 且枝晶上的小晶粒(~10 nm大小)变得密集. 根据循环伏安(CV)曲线中氢吸脱附电量可得出Pt 薄膜具有中等粗糙度(Cr=9-36), 且电极表面的粗糙度随着沉积时间增加而增大. 观察到Pt 薄膜上吸附态CO的原位红外光谱具有明显的增强吸收效应, 当沉积时间为6 min 时所制得的枝晶Pt 电极的红外增强效应最大. CO呈现多种谱峰形状, 随着沉积时间的增加, 谱峰形状依次为左高右低的双极峰(类Fano 红外效应), 单极向下(表面增强红外吸收), 左高右低的双极峰, 单极向上(异常红外效应), 左低右高的双极峰和单极向下. 这表明纳米材料薄膜所呈现出的特殊红外性能, 与纳米材料的尺度和聚集状态等密切相关. 所制备的枝晶状Pt 薄膜有望为深入认识纳米材料的特殊红外性能提供一个良好的模型材料.  相似文献   

5.
王琪  陆兴  辛勤  孙公权 《催化学报》2014,35(8):1394-1401
采用多元醇法制备了不同原子比例和载量的PtSnRu/C催化剂,利用透射电镜和X射线光电子能谱表征了所制备催化剂的物化性能,采用直接乙醇燃料电池(DEFC)单池性能测试了其电化学性能,并利用电化学原位光谱、气相色谱和中和滴定分析了乙醇电氧化过程和产物. DEFC单电池测试表明Pt2.6Sn1Ru0.4/C催化剂具有较高的电池性能,其中,以60 wt% Pt2.6Sn1Ru0.4/C催化剂为阳极的DEFC性能最高,90 ℃下最高功率密度为121 mW/cm2. 电化学原位红外光谱和阳极产物分析表明乙酸、乙醛、乙酸乙酯和CO2是乙醇电化学氧化产物,Pt2.6Sn1Ru0.4/C催化剂上乙醇的氧化效率较高. 阳极乙醇氧化活化能和催化剂表面组成分析结果表明,表面组成的相互作用使Pt2.6Sn1Ru0.4/C催化剂具有较低的乙醇氧化活化能和较高的乙醇氧化活性.  相似文献   

6.
石琴  门春艳  李娟 《物理化学学报》2013,29(8):1691-1697
以FeCl3-甲基橙(MO)为模板, 通过化学原位聚合法成功制备出氧化石墨烯/聚吡咯(GO/PPy)插层复合材料. 采用X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电镜(SEM)和透射电镜(TEM)等测试技术对复合材料进行物性表征. 此外, 利用循环伏安、恒电流充放电和交流阻抗测试方法对复合材料在两种不同水系电解液(1 mol·L-1 Na2SO4和1 mol·L-1 H2SO4)中的电化学性能进行了研究. 结果显示: 氧化石墨烯和聚吡咯表现出各自优势并发挥协同作用, 使得GO/PPy插层复合材料在中性和酸性电解液中都显示出可观的比电容. 电流密度为0.5 A·g-1时, GO/PPy 插层复合材料在Na2SO4和H2SO4电解液中的比电容分别为449.1 和619.0 F·g-1, 明显高于纯PPy的比电容. 经过800 次循环稳定性测试后, 两种不同电解液中, 复合材料初始容量的保持率分别为92%和62%. 其中酸性电解液体系中初始容量更大, 而中性溶液中具有更稳定的循环性能.  相似文献   

7.
以邻苯二胺为表面活性剂,通过水热釜法一步制备凹形树突状PtCu双金属纳米催化剂(PtCu NCDs)。PtCu NCDs在电催化甲醇氧化(MOR)的应用中表现出非常高的活性和很强的抗有毒中间体作用。PtCu NCDs对于甲醇氧化的质量活性为(0.53 A·mg-1 Pt)是商业Pt/C(0.26 A·mg-1 Pt)的2.04倍。从比活性的CV曲线图对比发现PtCu NCDs(1.07 mA·cm-2)是商业Pt/C(0.55 mA·cm-2)的1.95倍。而且,PtCu NCDs(2.76)比商业Pt/C催化剂(1.02)表现出更高的If/Ib比值。这些优异的电催化活性可能归功于PtCu NCDs特殊的凹形树突状形貌。  相似文献   

8.
通过PdCl42-与Co之间发生简单的置换反应,在表面活性剂PVP的作用下,成功地制备出由3nm的Pd纳米粒子组成的空心结构Pd纳米球结构,将其命名为Pd-NS。随后,以石墨烯(GN)作为载体,将Pd-NS负载在GN的表面制备了Pd-NS/GN催化剂。在甲酸电氧化催化反应中,Pd-NS/GN催化剂表现出较大的电化学比表面积、良好的电催化性能以及较高的稳定性。  相似文献   

9.
以邻苯二胺为表面活性剂,通过水热釜法一步制备凹形树突状PtCu双金属纳米催化剂(PtCu NCDs)。PtCu NCDs在电催化甲醇氧化(MOR)的应用中表现出非常高的活性和很强的抗有毒中间体作用。PtCu NCDs对于甲醇氧化的质量活性为(0.53 A·mg-1 Pt)是商业Pt/C(0.26 A·mg-1 Pt)的2.04倍。从比活性的CV曲线图对比发现PtCu NCDs(1.07 mA·cm-2)是商业Pt/C(0.55 mA·cm-2)的1.95倍。而且,PtCu NCDs(2.76)比商业Pt/C催化剂(1.02)表现出更高的If/Ib比值。这些优异的电催化活性可能归功于PtCu NCDs特殊的凹形树突状形貌。  相似文献   

10.
利用原位透射红外光谱研究了2.8 nm超细钴纳米粒子在2~3 MPa合成气(CO:H2 = 1:1)和100 oC条件下催化的1-己烯氢甲酰化反应. 结果表明, 在反应中出现与Co2(CO)8类似的红外吸收峰(2071, 2041和2022 cm-1), 被证明是不同Co位点端式吸附CO. 首次观测到了位于2054 cm-1处吸收峰处的物种, 可能归属为RCH2CH2COCo. 通过此中间物种,产物醛可以在钴催化剂表面经由结合一个氢原子脱除反应而获得.  相似文献   

11.
采用电位置换反应以及化学还原法制备了单分散PtNi纳米粒子,循环伏安结果显示该纳米粒子在0.1mol·L-1硫酸介质中对CO的氧化表现出比本体Pt电极更好的电催化活性.以CO为探针分子,采用电化学原位红外光谱研究了PtNi纳米粒子上的特殊红外光学性能.结果表明,PtNi纳米粒子无论是在玻碳电极还是在金电极上,均表现出对称的双极谱峰,同时给出很强的增强效应.论文研究结果有助于进一步了解低维纳米材料特殊红外性能的本质.  相似文献   

12.
以铂为基底电极,在1-乙基咪唑三氟乙酸盐(HEImTfa)离子液体中电化学合成导电聚吡咯(PPy),制得PPy-HEImTfa/Pt电极;采用循环伏安法研究了PPy-HEImTfa/Pt电极对抗坏血酸的电催化氧化性能.结果表明:PPy-HEImTfa/Pt电极对0.1mo·lL-1抗坏血酸具有较高的电催化氧化活性,与相同条件下硫酸溶液中在铂表面修饰的聚吡咯(PPy-H2SO4/Pt)电极和裸铂电极相比,其氧化峰电位分别降低了0.10和0.19V,氧化峰电流分别增加了3.0和3.6mA.同时采用原位傅里叶变换红外(insitu FTIR)光谱技术对抗坏血酸在PPy-HEImTfa/Pt电极上的电氧化机理进行了研究,结果表明:抗坏血酸在PPy-HEImTfa/Pt电极上首先被氧化为脱氢抗坏血酸,在水溶液中脱氢抗坏血酸迅速发生水合作用形成水合脱氢抗坏血酸,它进一步水解并发生内酯开环反应生成2,3-二酮古洛糖酸;在较高电位下,部分抗坏血酸最终被氧化成CO2.  相似文献   

13.
运用电化学循环伏安法(CV)和原位傅立叶变换红外(FTIR)反射光谱, 研究了不同pH值溶液中二甲醚(DME)在Pt电极上的解离吸附和氧化过程. 稳态CV结果给出, 在0.1 mol·L-1 H2SO4溶液中, 当电位处于0.05-0.35 V (vs RHE)区间, 约70%的Pt表面位被DME的解离吸附产物占据. DME电氧化反应的活性随pH值增加而下降, 在0.1 mol·L-1 NaOH溶液中, 氢的吸脱附几乎不受抑制且观察不到明显的氧化电流, 表明DME醚键上氧原子的质子化是其发生解离吸附和氧化的必要条件. 原位FTIR光谱研究给出DME解离吸附和氧化过程的分子水平信息, 指出DME在低电位区间解离生成线型吸附态CO(COL)毒性中间体. 当电位高于0.55 V(vs RHE)时, COL开始氧化为CO2; 在0.75-1.00 V(vs RHE)的电位区间则可同时发生经活性中间体(HCOOH)的氧化过程.  相似文献   

14.
乙醇在钯电极上的电氧化机理   总被引:2,自引:0,他引:2  
方翔  沈培康 《物理化学学报》2009,25(9):1933-1938
利用循环伏安与现场傅里叶变换红外(FTIR)光谱对乙醇在Pd电极上的电氧化机理进行了研究. 循环伏安测量表明, 乙醇在Pd上氧化的性能受pH值与乙醇浓度的影响. 当溶液pH>11.0时, Pd对乙醇才具有催化性能, 而且乙醇在Pd上氧化的性能随着pH值和乙醇浓度的增加而提高. 现场红外光谱电化学测量结果证明, 乙醇在不同pH 溶液中的氧化反应机理和产物不同. 当溶液pH>13.0 时, 产物只有乙酸盐, 说明乙醇仅发生部分氧化, 乙醇中的C—C键没有断裂. 当溶液pH≤13.0时, 尽管乙醇在Pd电极上的氧化活性受到抑制, 却发生完全氧化而产生二氧化碳, 说明乙醇的C—C键在低碱环境中容易断裂, 最后乙醇被完全氧化. 实验中没有检测到CO, 表明该反应途径是一个非毒化过程.  相似文献   

15.
Leiming Pan 《Acta Physico》2008,24(10):1739-1744
Dissociative adsorption and electrooxidation of dimethyl ether (DME) on a platinum electrode in different pH solutions were studied using cyclic voltammetry (CV) and in situ FTIR reflection spectroscopy. The coverage of the dissociative adsorbed species was measured about 70% from hydrogen adsorption-desorption region (0.05-0.35 V (vs RHE)) of steady-state voltammogram recorded in 0.1 mol·L−1 H2SO4 solution. It was found that the electrochemical reactivity of DME was pH dependent, i.e., the larger the pH value was, the less the reactivity of DME would be. No perceptible reactivity of DME in 0.1 mol·L−1 NaOH solution could be detected. It was revealed that the protonation of the oxygen atom in the C-O-C bond played a key role in the electrooxidation of DME. In situ FTIR spectroscopic results illustrated that linearly bonded CO (COL) species determined at low potential region were derived from the dissociative adsorption of DME and behaved as ‘poisoning’ intermediate. The COL species could be oxidized to CO2 at potential higher than 0.55 V (vs RHE) and in the potential range from 0.75 to 1.00 V (vs RHE) DME was oxidized simultaneously via HCOOH species that were identified as the reactive intermediates.  相似文献   

16.
以碳酸丙烯酯(PrC)为溶剂,高氯酸四丁基胺(TBAP)为电解质,利用电化学及红外光谱电化学开展了金电极上二氧化碳的还原研究。运用现场红外光谱跟踪电化学还原过程反应物及产物的生成和消失。红外光谱电化学循环伏吸法表明,在消耗CO2的同时,金电极上有CO的产生,且伴随有碳酸根的形成。结合电化学和光谱电化学结果,提出了一种电还原机理:在非水介质中,CO2电还原过程中生成了中间体CO2.-,随后CO2.-分别以两个途径进行还原,其一是直接被还原成CO,其二是与CO2结合生成C2O4.-而后歧化成CO以及CO32-。两个反应同时进行,且第一个反应是可逆过程。  相似文献   

17.
运用电化学循环伏安、原位FTIR反射光谱和石英晶体微天平(EQCM)等方法研究了碱性介质中异丙醇在Pt电极表面吸附和氧化行为. 结果表明:碱性介质中异丙醇电氧化过程不存在自毒化现象. 虽然电化学原位FTIR反射光谱未能检测到CO等毒性物种, 但EQCM结果证明异丙醇或其解离产物吸附于铂电极上. 在实验条件下, 碱性介质中异丙醇在铂电极上氧化的最终产物只有丙酮, 预示着碱性介质中异丙醇通过脱氢步骤氧化成丙酮. EQCM研究还从电极表面质量定量变化的角度提供了异丙醇吸附和电氧化反应机理的新数据.  相似文献   

18.
采用调变的多元醇法制备了高分散的Pt/C, PtRu/C和Ru/C电催化剂. XRD计算结果表明, PtRu/C电催化剂的平均粒径和合金度分别为2.2 nm和71%. 采用电化学方法和原位傅里叶变换红外反射光谱方法(in situ FTIRS)研究了甲醇在3种电催化剂上的吸附氧化过程, 发现PtRu/C对甲醇的催化活性明显高于Pt/C, Ru的加入一方面影响了甲醇在Pt上的解离吸附性能, 另一方面提供了Ru-OH物种, 从而抑制了低电位下电催化剂中毒. 红外光谱研究结果表明, 线性吸附态CO(COL)是主要毒化物种, 反应产物主要是CO2, 还有少量的甲酸甲酯. 根据实验结果讨论了甲醇在PtRu/C电催化剂上的氧化机理.  相似文献   

19.
The interfacial properties of mesocarbon-microbeads (MCMB) and lithium electrodes during charge process in poly (vinylidenefluoride-co-hexafluoropropylene)-based gel electrolyte were investigated by in situ Raman microscopy, in situ Fourier transform-infrared (FTIR) spectroscopic methods, and charge–discharge, electrochemical impedance spectroscopy techniques. For MCMB electrode, the series phase transitions from initial formation of the dilute stage 1 graphite intercalation compound (GIC) to a stage 4 GIC, then through a stage 3 to stage 2, and finally to stage 1 GIC was proved by in situ Raman spectroscopic measurement. The formation of solid electrolyte interface (SEI) films formed on MCMB and metal lithium electrode was studied by in situ reflectance FTIR spectroscopic method. At MCMB electrode surface, the solvent (mostly ethylene carbonate) decomposed during charging process and ROCO2Li may be the product. ROCO2Li, ROLi, and Li2CO3 were the main composites of SEI film formed on lithium electrode, not on electrodeposited lithium electrode or lithium foil electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号