首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
用QC ISD(T)/6-311 G(3DF,3PD)/MP2/6-311G(D,P)方法研究了H原子与CH3NH2的抽氢反应过程。该反应包含两个反应通道:H分别从CH3基团(R1)和NH2(R2)基团上抽氢。R1势垒比R2势垒低3.42kJ/mol,表明R1是主反应通道。在从头算的基础上,用变分过渡态理论(CVT)加小曲率隧道效应(SCT)研究了各反应温度范围为200~4000K内的速率常数,所得结果与实验值符合的很好。动力计算表明,在所研究的温度范围内,变分效应对速率常数的计算影响不大,而在低温范围内,隧道效应起了很重要的作用。  相似文献   

2.
CH3S自由基H迁移异构化及脱H2反应的直接动力学研究   总被引:5,自引:0,他引:5  
王文亮  刘艳  王渭娜  罗琼  李前树 《化学学报》2005,63(17):1554-1560,F0005
采用密度泛函方法(MPW1PW91)在6.311G(d,p)基组水平上研究了CH3S自由基H迁移反应CH3S→CH2SH(R1),脱H2反应CH3S→HCS+H2(R2)以及脱H2产物HCS异构化反应HCS→CSH(R3)的微观动力学机理.在QCISD(t)/6.311++G(d,p)//MPW1PW91/6.311G(d,p)+ZPE水平上进行了单点能校正.利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了各反应在200-2000K温度区间内的速率常数K^TST和k^CVT,同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数萨k^CVT/SCT.结果表明,反应R1,R2和R3的势垒△E^≠分别为160.69,266.61和241.63kJ/mol。R1为反应的主通道.低温下CH3S比CH2SH稳定,高温时CH2SH比CH3S更稳定.另外,速率常数计算结果显示,量子力学隧道效应在低温段对速率常数的计算有显著影响,而变分效应在计算温度段内对速率常数的影响可以忽略.  相似文献   

3.
在G3B3,CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p)水平上详细研究了CH3SH与基态NO2的微观反应机理.在B3LYP/6-311++G(d,p)水平得到了反应势能面上所有反应物、过渡态和产物的优化构型,通过振动频率分析和内禀反应坐标(IRC)跟踪验证了过渡态与反应物和产物的连接关系.在CCSD(T)/6-311++G(d,p)和G3B3水平计算了各物种的能量,得到了反应势能面.利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT),分别计算了在200~3000K温度范围内的速率常数kTST,kCVT和kCVT/SCT.研究结果表明,该反应体系共存在5个反应通道,其中N进攻巯基上H原子生成CH3S+HNO2的通道活化势垒较低,为主要反应通道.动力学数据也表明,该通道在200~3000K计算温度范围内占绝对优势,拟合得到的速率常数表达式为k1CVT/SCT=1.93×10-16T0.21exp(-558.2/T)cm3·molecule-1·s-1.  相似文献   

4.
采用密度泛函方法(B3LYP)在6-311+G(d,p)基组水平上研究了CH3CH2S自由基H迁移异构化以及裂解反应的微观动力学机理. 在QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)+ZPE水平上进行了单点能校正. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了在200~2000 K温度区间内的速率常数kTST和kCVT, 同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT. 研究结果表明, CH3CH2S自由基1,2-H迁移、1,3-H迁移、C—C键断裂和β-C—H键断裂反应的势垒ΔE≠分别为149.74, 144.34, 168.79和198.29 kJ/mol. 当温度低于800 K时, 主要发生1,2-H迁移反应, 高于1800 K时, 主要表现为C—C键断裂反应, 在1300—1800 K范围内, 1,3-H迁移反应是优势通道, 在计算的整个温度段内, β-C—H键断裂反应可以忽略.  相似文献   

5.
在MPW1PW91/6-311G(d,p)水平上优化了标题反应各驻点物种的几何构型,并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证.采用QCISD(T)/6-311G(d,p)方法对所有驻点及反应路径的部分选择点进行单点能校正,分别构建了CH3SO+HO2反应体系的单、三重态反应势能剖面.研究结果表明,CH3SO+HO2反应体系存在6条反应通道7条路径,优势通道(1)R→3IM→P1(CH3SOH+3O2)发生在三重态势能面上,此通道包含两条路径,其表观活化能分别为12.01和-30.04kJ?mol-1,主路径(2)R→3IM→3TS2→P1(CH3SOH+3O2)是一个无势垒氢迁移过程.利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT),分别计算了主路径(2)在200~2500K温度范围内的速率常数kTST,kCVT和kCVT/SCT,在此温度区间内的表观反应速率常数三参数表达式为kCVT/SCT=4.08×10-24T3.13exp(8012.2/T)cm3imolecule-1is-1,具有负温度系数效应.速率常数计算结果显示,变分效应在计算温度段内影响较小,而量子力学隧道效应在低温段有显著影响.  相似文献   

6.
采用双水平直接动力学方法对C2H3与CH3F氢抽提反应进行了研究. 在QCISD(T)/6-311++G(d, p)//B3LYP/6-311G(d, p)水平上, 计算的三个反应通道R1、R2和R3的能垒(ΔE)分别为43.2、43.9和44.1 kJ·mol-1, 反应热为-38.2 kJ·mol-1. 此外, 利用传统过渡态理论(TST)、正则变分过渡态理论(CVT)和包含小曲率隧道效应(SCT)的CVT, 分别计算了200-3000 K温度范围内反应的速率常数kTST、kCVT和kCVT/SCT. 结果表明: (1) 三个氢抽提反应通道的速率常数随温度的增加而增大, 其中变分效应的影响可以忽略, 隧道效应则在低温段影响显著; (2) R1反应是主反应通道, 但随着温度的升高, R2反应的竞争力增大, 而R3反应对总速率常数的影响很小.  相似文献   

7.
采用密度泛函理论B3LYP方法,在6-311 G(d,p)基组水平上研究了二甲亚砜(DMSO)与XO(X=Cl,Br)自由基反应的微观动力学机理,并利用经过wigner校正的传统过渡态理论计算了标题反应在200~2000 K温度范围内的反应速率常数。研究结果表明,DMSO与XO(X=Cl,Br)自由基反应主要有氧转移和抽氢两种反应机理,氧转移反应的能垒显著低于抽氢反应,且前者为放热反应后者为吸热反应;低温时氧转移反应占绝对优势,298 K时DMSO与XO(X=Cl,Br)两个反应体系的总速率常数分别为2.09×10-15和1.75×10-14cm3.molecu le-1.s-1,氧转移反应分支比均为100%。高温时抽氢反应上升为主通道。2000 K时其总速率常数分别为6.32×10-12和8.41×10-12cm3.molecule-1.s-1,抽氢反应分支比分别为91.8%和79.4%。  相似文献   

8.
在G3B3, CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p)水平上详细研究了CH3SH与基态NO2的微观反应机理. 在B3LYP/6-311++G(d,p)水平得到了反应势能面上所有反应物、过渡态和产物的优化构型, 通过振动频率分析和内禀反应坐标(IRC)跟踪验证了过渡态与反应物和产物的连接关系. 在CCSD(T)/6-311++G(d,p)和G3B3水平计算了各物种的能量, 得到了反应势能面. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT), 分别计算了在200~3000 K温度范围内的速率常数kTST, kCVT和kCVT/SCT. 研究结果表明, 该反应体系共存在5个反应通道, 其中N进攻巯基上H原子生成CH3S+HNO2的通道活化势垒较低, 为主要反应通道. 动力学数据也表明, 该通道在200~3000 K计算温度范围内占绝对优势, 拟合得到的速率常数表达式为k1CVT/SCT=1.93×10-16T0.21exp(-558.2/T) cm3&;#8226;molecule-1&;#8226;s-1.  相似文献   

9.
采用直接动力学方法,对CHBr2+HBr→CH2Br2+Br反应通道进行了理论研究,在B3LYP/6-311+G(d,p)水平下获得了优化几何构型、频率以及最小能量路径,更精确的单点能在B3LYP/6-311++G(3df,2pd)水平下完成.利用正则变分过渡态理论,结合小曲率隧道效应校正方法计算了反应通道在220 K~2 000 K温度范围内的速率常数.在整个反应区间,隧道效应对反应的影响比较大;变分效应在低温时有一定的影响,在高温区间的影响很小可以忽略.计算得到的速率常数和已有实验值很好地吻合.  相似文献   

10.
刘艳  任宏江  刘亚强  王渭娜 《化学学报》2009,67(22):2541-2548
采用量子化学QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)方法研究了H2FCS单分子分解反应的微观动力学性质, 构建了反应势能剖面. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT), 分别计算了在200~3000 K温度范围内的速率常数kTST、kCVT和kCVT/SCT. 计算结果表明, H2FCS可经过不同的反应通道生成10种小分子产物, 脱H反应和HF消去反应为标题反应的主反应通道, 其中HF消去反应产物HCS可由两条反应通道生成. 在200~3000 K温度区间内得到三条反应通道的表观反应速率常数三参数表达式分别为 , 和 . 速率常数计算结果显示, 量子力学隧道效应在低温区间对反应速率常数的影响显著, 而变分效应在计算温度范围内可以忽略.  相似文献   

11.
Ab initio calculations establish that CH3O+=CHCH3 (1) rearranges in gas phase isolation to CH2=O+C2H5 (2) directly rather than through CH3OCH2CH 2 + (3). The reaction is predicted to be antarafacial, in accord with the Woodward-Hoffmann (W-H) predictions. We predict an activation energy of 212.0 kJ/mol for this process at the QCISD(T)/6-311G**//MP2/6-311G** level. We also reinvestigated the degenerate rearrangement of CH3O=CH 2 + by a 1,3-sigmatropic shift. The W-H model is not a good one for the transition state (TS) for the latter reaction because the π bonding has been completely broken off. That TS is stabilized by three-center bonding between the carbons and the hydrogen being transferred. We also examined the questions of the importance of polarization functions on hydrogen and a set of outer valence functions on all the atoms in describing these hydrogen transfer TSs, and whether it is necessary to include these functions in the TS optimization runs. For the rearrangements we studied, polarization functions on hydrogen are crucial only for 1,2 hydrogen shifts. The 6-31G* basis set is adequate and good for the optimization of TSs of other ring sizes. For the 1,3 and 1,4 shifts we examined, a combination of both outer valence functions and polarization functions on hydrogen causes reductions in the computed activation energies ranging from 5.9 kJ/mol for the 1,4 shift at the RHF level to 15.6 kJ/mol for the 1,3 shift at the MP2 level.  相似文献   

12.
A study of the reaction initiated by the thermal decomposition of di-t-butyl peroxide (DTBP) in the presence of (CH3)2C?CH2 (B) at 391–444 K has yielded kinetic data on a number of reactions involving CH3 (M·), (CH3)2CCH2CH3 (MB·) and (CH3)2?CH2C(CH3)2CH2CH3 (MBB·) radicals. The cross-combination ratio for M· and MB· radicals, rate constants for the addition to B of M· and MB· radicals relative to those for their recombination reactions, and rate constants for the decomposition of DTBP, have been determined. The values are, respectively, where θ = RT ln 10 and the units are dm3/2 mol?1/2 s?1/2 for k2/k and k9/k, s?1 for k0, and kJ mol?1 for E. Various disproportionation-combination ratios involving M·, MB·, and MBB· radicals have been evaluated. The values obtained are: Δ1(M·, MB·) = 0.79 ± 0.35, Δ1(MB·, MB·) = 3.0 ± 1.0, Δ1(MBB·, MB·) = 0.7 ± 0.4, Δ1(M·, MBB·) = 4.1 ± 1.0, Δ1(MB·, MBB·) = 6.2 ± 1.4, and Δ1(MBB·, MBB·) = 3.9 ± 2.3, where Δ1 refers to H-abstraction from the CH3 group adjacent to the center of the second radical, yielding a 1-olefin. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
The title reaction has been investigated in a diaphragmless shock tube by laser schlieren densitometry over the temperature range 1163-1629 K and pressures of 60, 120, and 240 Torr. Methyl radicals were produced by dissociation of 2,3-butanedione in the presence of an excess of dimethyl ether. Rate coefficients for CH(3) + CH(3)OCH(3) were obtained from simulations of the experimental data yielding the following expression which is valid over the range 1100-1700 K: k = (10.19 ± 3.0)T(3.78)?exp((-4878/T)) cm(3) mol(-1)s(-1). The experimental results are in good agreement with estimates by Curran and co-workers [Fischer, S. L.; Dryer, F. L.; Curran, H. J. Int. J. Chem. Kinet.2000, 32 (12), 713-740. Curran, H. J.; Fischer, S. L.; Dryer, F. L. Int. J. Chem. Kinet.2000, 32 (12), 741-759] but about a factor of 2.6 lower than those of Zhao et al. [Zhao, Z.; Chaos, M.; Kazakov, A.; Dryer, F. L. Int. J. Chem. Kinet.2008, 40 (1), 1-18].  相似文献   

14.
Direct variable reaction coordinate transition state theory (VRC-TST) rate coefficients are reported for the (3)CH(2) + OH, (3)CH(2) + (3)CH(2), and (3)CH(2) + CH(3) barrierless association reactions. The predicted rate coefficient for the (3)CH(2) + OH reaction (approximately 1.2 x 10(-10) cm(3) molecule(-1) s(-1) for 300-2500 K) is 4-5 times larger than previous estimates, indicating that this reaction may be an important sink for OH in many combustion systems. The predicted rate coefficients for the (3)CH(2) + CH(3) and (3)CH(2) + (3)CH(2) reactions are found to be in good agreement with the range of available experimental measurements. Product branching in the self-reaction of methylene is discussed, and the C(2)H(2) + 2H and C(2)H(2) + H2 products are predicted in a ratio of 4:1. The effect of the present set of rate coefficients on modeling the secondary kinetics of methanol decomposition is briefly considered. Finally, the present set of rate coefficients, along with previous VRC-TST determinations of the rate coefficients for the self-reactions of CH(3) and OH and for the CH(3) + OH reaction, are used to test the geometric mean rule for the CH(3), (3)CH(2), and OH fragments. The geometric mean rule is found to predict the cross-combination rate coefficients for the (3)CH(2) + OH and (3)CH(2) + CH(3) reactions to better than 20%, with a larger (up to 50%) error for the CH(3) + OH reaction.  相似文献   

15.
Rate constants for the gas‐phase reactions of CH3OCH2CF3 (k1), CH3OCH3 (k2), CH3OCH2CH3 (k3), and CH3CH2OCH2CH3 (k4) with NO3 radicals were determined by means of a relative rate method at 298 K. NO3 radicals were prepared by thermal decomposition of N2O5 in a 700–750 Torr N2O5/NO2/NO3/air gas mixture in a 1‐m3 temperature‐controlled chamber. The measured rate constants at 298 K were k1 = (5.3 ± 0.9) × 10?18, k2 = (1.07 ± 0.10) × 10?16, k3 = (7.81 ± 0.36) × 10?16, and k4 = (2.80 ± 0.10) × 10?15 cm3 molecule?1 s?1. Potential energy surfaces for the NO3 radical reactions were computationally explored, and the rate constants of k1k5 were calculated according to the transition state theory. The calculated values of rate constants k1k4 were in reasonable agreement with the experimentally determined values. The calculated value of k5 was compared with the estimate (k5 < 5.3 × 10?21 cm3 molecule?1 s?1) derived from the correlation between the rate constants for reactions with NO3 radicals (k1k4) and the corresponding rate constants for reactions with OH radicals. We estimated the tropospheric lifetimes of CH3OCH2CF3 and CHF2CF2OCH2CF3 to be 240 and >2.4 × 105 years, respectively, with respect to reaction with NO3 radicals. The tropospheric lifetimes of these compounds are much shorter with respect to the OH reaction. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 490–497, 2009  相似文献   

16.
1 INTRODUCTION Recently, the researches on inorganic-organic hy-brid compounds represent an advanced field in mate-rial science[1]. At the molecular level, the combina-tion of two extremely different components providesan avenue to design new hybrid materials as well asthe ability to modulate properties of one or more ofthe components[2~6]. Some attractive properties, suchas efficient luminescence[2~4], ideal thermal and me-chanical stability, interesting magnetic[5], non-linearoptical[…  相似文献   

17.
Non-exponential proton spin—lattice relaxation has been observed in solid CH3CH3 and CH3CD3. Comparison with recent theoretical predi  相似文献   

18.
The hydrogen abstraction reactions of CH3CHFCH3 and CH3CH2CH2F with the OH radicals have been studied theoretically by a dual-level direct dynamics method. The geometries and frequencies of all the stationary points are optimized by means of the DFT calculation. There are complexes at the reactant side or exit route, indicating these reactions may proceed via indirect mechanisms. To improve the reaction enthalpy and potential barrier of each reaction channel, the single point energy calculation is performed by the MC-QCISD/3 method. The rate constants are evaluated by canonical variational transition state theory (CVT) with the small-curvature tunneling correction method (SCT) over a wide temperature range 200-2000 K. The canculated CVT/SCT rate constants are consistent with available experimental data. The results show that both the variation effect and the SCT contribution play an important role in the calculation of the rate constants. For reactions CH3CHFCH3 and CH3CH2CH2F with OH radicals, the channels of H-abstraction from -CHF- and -CH2- groups are the major reaction channels, respectively, at lower temperature. Furthermore, to further reveal the thermodynamics properties, the enthalpies of formation of reactants CH3CHFCH3, CH3CH2CH2F, and the product radicals CH3CFCH3, CH3CHFCH2, CH3CH2CHF, CH3CHCH2F, and CH2CH2CH2F are studied using isodesmic reactions.  相似文献   

19.
A computational study of dimers formed by aniline and one or two CH3X molecules, X being CN, Cl or F, was carried out to elucidate the main characteristics of the interacting systems. Two different structures were found for each of the dimers, depending on the relative location of the CH3X molecule with respect to the NH2 hydrogen atoms. The most stable complex is formed with acetonitrile, with a complexation energy amounting to ?27.0?kJ/mol. Methyl chloride and methyl fluoride form complexes with complexation energies amounting to ?18.1 and ?17.5?kJ/mol, respectively, though the structural arrangement is quite different for both structures. In most complexes, the leading contribution to the stabilization of the complex is dispersion, though the electrostatic contribution is almost as important. Three different minima were obtained for clusters containing two CH3X molecules depending on the side they occupy with respect to the phenyl ring. The complexation energies for these structures amount to ?58.5, ?38.6 and ?36.3?kJ/mol for acetonitrile, methyl chloride and methyl fluoride, respectively.  相似文献   

20.
Methylthio- (MTE) and bis-methylthioethyne (BMTE) molecules are calculated by the SCF MO method (geometry optimization, basis set 6–31G*/MP2). The calculated internal rotation barriers of methyl groups are 7.12 kJ/lmole for MTE and 12.86 kJ/mole for BMTE (both groups are simultaneously rotated). The s-gosh-orientation of the thiomethyl fragments corresponds to a stable conformation of BMTE. The estimated values of the s-cis- and s-trans-barriers of mutual rotation of SCH3 groups about the axis of the C≡C bond are 13.61 and 12.54 kJ/mole, respectively. Conformationally sensitive MOs and vibration frequencies are established. An analysis of the experimental IR absorption and Raman spectra and the calculated vibrational spectrum makes it possible to conclude that in the liquid phase the BMTE molecules also have an s-gosh-conformation. Translated fromZhumal Strukturnoi Khimii, Vol. 39, No. 4, pp. 602–609, July–August, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号