首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topological Dirac phases.It is a fundamental challenge to realize quantum transition between Z_2 nontrivial topological insulator(TI) and topological crystalline insulator(TCI) in one material because Z_2 TI and TCI have different requirements on the number of band inversions. The Z_2 TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Taking PbSnTe_2 alloy as an example, here we demonstrate that the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and Z_2 TI phase in a single material. Our results suggest that the atomic-ordering provides a new platform towards the realization of reversibly switching between different topological phases to explore novel applications.  相似文献   

2.
Recent theoretical and experimental researches have revealed that the strained bulk HgTe can be regarded as a three-dimensional topological insulator (TI). Motivated by this, we explore the strain effects on the transport properties of the HgTe surface states, which are modulated by a weak 1D in-plane electrostatic periodic potential in the presence of a perpendicular magnetic field. We analytically derive the zero frequency (dc) diffusion conductivity for the case of quasielastic scattering in the Kubo formalism, and find that, in strong magnetic field regime, the Shubnikov–de Haas oscillations are superimposed on top of the Weiss oscillations due to the electric modulation for null and finite strain. Furthermore, the strain is shown to remove the degeneracy in inversion symmetric Dirac cones on the top and bottom surfaces. This accordingly gives rise to the splitting and mixture of Landau levels, and the asymmetric spectrum of the dc conductivity. These phenomena, not known in a conventional 2D electron gas and even in a strainless TI and graphene, are a consequence of the anomalous spectrum of surface states in a fully stained TI. These results should be valuable for electronic and spintronic applications of TIs, and thus we fully expect to see them in the further experiment.  相似文献   

3.
廖剑  史刚  刘楠  李永庆 《中国物理 B》2016,25(11):117201-117201
The recent discovery of three-dimensional(3D) topological insulators(TIs) has provided a fertile ground for obtaining further insights into electron localization in condensed matter systems.In the past few years,a tremendous amount of research effort has been devoted to investigate electron transport properties of 3D TIs and their low dimensional structures in a wide range of disorder strength,covering transport regimes from weak antilocalization to strong localization.The knowledge gained from these studies not only offers sensitive means to probe the surface states of 3D TIs but also forms a basis for exploring novel topological phases.In this article,we briefly review the main experimental progress in the study of the localization in 3D TIs,with a focus on the latest results on ultrathin TI films.Some new transport data will also be presented in order to complement those reported previously in the literature.  相似文献   

4.
Yi-Xiang Wang 《中国物理 B》2022,31(9):90501-090501
We employ the Dirac cone model to explore the high Chern number (C) phases that are realized in the magnetic-doped topological insulator (TI) multilayer structures by Zhao et al. [Nature 588 419 (2020)]. The Chern number is calculated by capturing the evolution of the phase boundaries with the parameters, then the Chern number phase diagrams of the TI multilayer structures are obtained. The high-C behavior is attributed to the band inversion of the renormalized Dirac cones, along with which the spin polarization at the $\varGamma$ point will get increased. Moreover, another two TI multilayer structures as well as the TI superlattice structures are studied.  相似文献   

5.
We study collective behavior of magnetic adatoms randomly distributed on the surface of a topological insulator. Interactions of an ensemble of adatoms are frustrated, as the RKKY-type interactions of two adatom spins depend on the directions of spins relative to the vector connecting them. We show that at low temperatures the frustrated RKKY interactions give rise to two phases: an ordered ferromagnetic phase with spins pointing perpendicular to the surface, and a disordered spin-glass-like phase. The two phases are separated by a quantum phase transition driven by the magnetic exchange anisotropy. The ordered phase breaks time-reversal symmetry spontaneously, driving the surface states into a gapped state, which exhibits an anomalous quantum Hall effect and provides a realization of the parity anomaly. We find that the magnetic ordering is suppressed by potential scattering.  相似文献   

6.
拓扑超导体自身具有对量子退相干天然的免疫性以及可编织性,这使得它在现代量子计算领域中受到了越来越多的重视,并且成为了下一代计算技术中最有希望的候选者之一。由于拓扑超导态在固有拓扑超导体中相当罕见,因此,当前大部分实验上的工作主要集中在由 s 波超导体与拓扑绝缘体之间通过近邻效应所诱导的拓扑超导体上。本论文中,我们回顾了基于拓扑绝缘体/超导体异质结的拓扑超导体的研究进展。在理论上,Fu 和 Kane 提出,通过近邻效应将 s 波超导体的能隙引入到拓扑绝缘体,可以诱导出拓扑超导电性。在实验上,我们也回顾了一些不同体系中的拓扑超导近邻效应的研究进展。文章的第一部分,我们介绍了一些异质结,包括:三维拓扑绝缘体 Bi2Se3和 Bi2Se3 与 s 波超导体NbSe2 以及 d 波超导体 Bi2Sr2CaCu2O8+δ 的异质结,拓扑绝缘体 Sn1−xPbxTe 与 Pb 的异质结,二维拓扑绝缘体 WTe2 与NbSe2 的异质结。此外,还介绍了 TiBiSe2 在 Pb 上的拓扑绝缘近邻效应。另一部分中,我们对基于拓扑绝缘体的约瑟夫森结进行了回顾,包括著名的基于 Fu-Kane 体系的拓扑绝缘体约瑟夫森结,以及基于约瑟夫森结的超导量子干涉器件。  相似文献   

7.
We show that gated bilayer graphene hosts a strong topological insulator (TI) phase in the presence of Rashba spin-orbit (SO) coupling. We find that gated bilayer graphene under preserved time-reversal symmetry is a quantum valley Hall insulator for small Rashba SO coupling λ(R), and transitions to a strong TI when λ(R)>√[U(2)+t(⊥)(2)], where U and t(⊥) are, respectively, the interlayer potential and tunneling energy. Different from a conventional quantum spin Hall state, the edge modes of our strong TI phase exhibit both spin and valley filtering, and thus share the properties of both quantum spin Hall and quantum valley Hall insulators. The strong TI phase remains robust in the presence of weak graphene intrinsic SO coupling.  相似文献   

8.
李兆国  张帅  宋凤麒 《物理学报》2015,64(9):97202-097202
拓扑绝缘体因其无能量耗散的拓扑表面输运而备受关注, 揭示拓扑表面态因其 的贝利相位而产生的拓扑输运现象, 将有助于拓扑绝缘体相关器件的应用开发. 本文回顾了普适电导涨落(UCF) 揭示拓扑绝缘体奇异输运性质的研究进展. 通过调控温度、角度、门电压、垂直磁场和平行磁场等外部参量, 实现了对拓扑绝缘体的UCF 效应的系统研究, 证实了拓扑绝缘体中二维UCF 的输运现象, 并通过尺寸标度规律获得了UCF 的拓扑起源的实验证据, 讨论了拓扑表面态的UCF 的统计对称规律. 从而实现了对拓扑绝缘体UCF 效应的较为完整的理解.  相似文献   

9.
We generalize the topological response theory of three-dimensional topological insulators (TI) to metallic systems-specifically, doped TI with finite bulk carrier density and a time-reversal symmetry breaking field near the surface. We show that there is an inhomogeneity-induced Berry phase contribution to the surface Hall conductivity that is completely determined by the occupied states and is independent of other details such as band dispersion and impurities. In the limit of zero bulk carrier density, this intrinsic surface Hall conductivity reduces to the half-integer quantized surface Hall conductivity of TI. Based on our theory we predict the behavior of the surface Hall conductivity for a doped topological insulator with a top gate, which can be directly compared with experiments.  相似文献   

10.
We study the effect of the Fermi surface anisotropy (hexagonal warping) on the superconducting pair potential, induced in a three-dimensional topological insulator (TI) by proximity with an s-wave superconductor (S) in presence of a magnetic moment of a nearby ferromagnetic insulator (FI). In the previous studies, similar problem was treated with a simplified Hamiltonian, describing an isotropic Dirac cone dispersion. This approximation is only valid near the Dirac point. However, in topological insulators, the chemical potential often lies well above this point, where the Dirac cone is strongly anisotropic and its constant energy contour has a snowflake shape. Taking into account this shape, we show that a very exotic pair potential is induced on the topological insulator surface. Based on the symmetry arguments we also discuss the possibility of a supercurrent flowing along the S/FI interface, when an S/FI hybrid structure is formed on the TI surface.  相似文献   

11.
New two-dimensional systems such as the surfaces of topological insulators (TIs) and graphene offer the possibility of experimentally investigating situations considered exotic just a decade ago. These situations include the quantum phase transition of the chiral type in electronic systems with a relativistic spectrum. Phonon-mediated (conventional) pairing in the Dirac semimetal appearing on the surface of a TI causes a transition into a chiral superconducting state, and exciton condensation in these gapless systems has long been envisioned in the physics of narrow-band semiconductors. Starting from the microscopic Dirac Hamiltonian with local attraction or repulsion, the Bardeen–Cooper–Schrieffer type of Gaussian approximation is developed in the framework of functional integrals. It is shown that owing to an ultrarelativistic dispersion relation, there is a quantum critical point governing the zero-temperature transition to a superconducting state or the exciton condensed state. Quantum transitions having critical exponents differ greatly from conventional ones and belong to the chiral universality class. We discuss the application of these results to recent experiments in which surface superconductivity was found in TIs and estimate the feasibility of phonon pairing.  相似文献   

12.
《Current Applied Physics》2020,20(5):680-685
We report the fabrication and characterization of superconducting quantum interference devices (SQUIDs) made of Sb-doped Bi2Se3 topological insulator (TI) nanoribbon (NR) contacted with PbIn superconducting electrodes. When an external magnetic field was applied along the NR axis, the TI NR exhibited periodic magneto-conductance oscillations, the so-called Aharonov-Bohm oscillations, owing to one-dimensional subbands. Below the superconducting transition temperature of PbIn electrodes, we observed supercurrent flow through TI NR-based SQUID. The critical current periodically modulates with a magnetic field perpendicular to the SQUID loop, revealing that the periodicity corresponds to the superconducting flux quantum. Our experimental observations can be useful to explore Majorana bound states (MBS) in TI NR, promising for developing topological quantum information devices.  相似文献   

13.
The effect of atomic impurities including N, O, Na, Ti and Co on the surface states of the topological insulator (TI) Bi(2)Te(3) is studied using pseudopotential first principles methods. The robustness of the TI surface states is particularly investigated against magnetic and non-magnetic atomic adsorption by calculating the electronic band structure, charge transfer, and magnetic moments. Interestingly, it is found that a non-magnetic nitrogen atom has produced a residual magnetic moment and opens a gap in the surface states whereas Na and O atoms preserve the Dirac-like dispersion. The charge transfer from the adatoms produces an electric dipole field that causes Rashba splitting in the surface bands. For atomic impurities with 3d orbitals (Ti and Co), the TI surface states are destroyed and two spin-resolved resonance peaks are developed near the Fermi level in the DOS.  相似文献   

14.
An intrinsic magnetic topological insulator(TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel topological quantum effects but remained elusive experimentally for a long time. Here we report the experimental realization of thin films of an intrinsic magnetic TI, MnBi_2Te_4, by alternate growth of a Bi_2Te_3 quintuple layer and a MnTe bilayer with molecular beam epitaxy. The material shows the archetypical Dirac surface states in angle-resolved photoemission spectroscopy and is demonstrated to be an antiferromagnetic topological insulator with ferromagnetic surfaces by magnetic and transport measurements as well as first-principles calculations. The unique magnetic and topological electronic structures and their interplays enable the material to embody rich quantum phases such as quantum anomalous Hall insulators and axion insulators at higher temperature and in a well-controlled way.  相似文献   

15.
We study the effect of magnetic doping at the surface of a three dimensional topological insulator (TI) on emergence of ferromagnetic ordering at the TI-surface assuming the exchange coupling between the Dirac fermions and the dilute magnetic ions. We show that this coupling results in an uniaxial magnetic anisotropy with out-of-plane magnetization direction. It is found that the system under consideration is unstable with respect to a spontaneous uniform magnetization along the easy axis, which is accompanied by opening a gap in a spectrum of the Dirac surface states. In the framework of a mean-field approach, we study the possibility of ferromagnetic order on the magnetically doped surface of TI at different temperatures and positions of the chemical potential.  相似文献   

16.
Over a long period of exploration, the successful observation of quantized version of anomalous Hall effect (AHE) in thin film of magnetically doped topological insulator (TI) completed a quantum Hall trio—quantum Hall effect (QHE), quantum spin Hall effect (QSHE), and quantum anomalous Hall effect (QAHE). On the theoretical front, it was understood that the intrinsic AHE is related to Berry curvature and U(1) gauge field in momentum space. This understanding established connection between the QAHE and the topological properties of electronic structures characterized by the Chern number. With the time-reversal symmetry (TRS) broken by magnetization, a QAHE system carries dissipationless charge current at edges, similar to the QHE where an external magnetic field is necessary. The QAHE and corresponding Chern insulators are also closely related to other topological electronic states, such as TIs and topological semimetals, which have been extensively studied recently and have been known to exist in various compounds. First-principles electronic structure calculations play important roles not only for the understanding of fundamental physics in this field, but also towards the prediction and realization of realistic compounds. In this article, a theoretical review on the Berry phase mechanism and related topological electronic states in terms of various topological invariants will be given with focus on the QAHE and Chern insulators. We will introduce the Wilson loop method and the band inversion mechanism for the selection and design of topological materials, and discuss the predictive power of first-principles calculations. Finally, remaining issues, challenges and possible applications for future investigations in the field will be addressed.  相似文献   

17.
《Physics letters. A》2020,384(21):126425
By means of the mean-field method and the random phase approximation, we study the magnetic properties of the correlated Chern insulator on a checkerboard lattice with topological flat band. The antiferromagnetic (AF) order is found to be more stable than the ferromagnetic (FM) order at half filling. While at quarter filling, the system becomes a FM-Chern insulator induced by the FM order. The phase diagram is more complex for other fillings. FM order is more stable than AF order for small doping due to the flatness of band structure, while FM and AF orders compete at large doping.  相似文献   

18.
Topological insulators (Tls) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which con- ventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insu- lator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topo- logical helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath, These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI- based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications.  相似文献   

19.
拓扑近藤绝缘体是一种本征的强关联拓扑电子体系,其体能隙来源于近藤关联效应。自2010年拓扑近藤绝缘体的理论概念被提出后,六硼化钐(SmB6) 作为第一种被预测为拓扑近藤绝缘体的材料在这十多年中被多种实验手段反复研究验证,被广泛接受认为是第一种拓扑近藤绝缘体。在这篇综述中,我们回顾了关于SmB6 的一些重要实验结果,比如电输运测量,角分辨光电子能谱(ARPES), 表面形貌分析(STM) 等,并论述了如何通过这些关键的实验证据证实SmB6 的拓扑近藤绝缘物相。同时,我们也展示了SmB6 这一关联电子体系的其他奇异物性,包括中间价态在表面和体内的分离现象,以及量子振荡发现的体振荡信号等等。这些性质表明我们对SmB6 这一材料的理解仍然不充分,其中还有更为丰富的物理值得挖掘。  相似文献   

20.
陈泽国  吴莹 《物理学报》2017,66(22):227804-227804
研究了圆环型波导依照蜂窝结构排列的声子晶体系统中的拓扑相变.利用晶格结构的点群对称性实现赝自旋,并在圆环中引入旋转气流来打破时间反演对称性.通过紧束缚近似模型计算的解析结果表明,没有引入气流时,调节几何参数,系统存在普通绝缘体和量子自旋霍尔效应绝缘体两个相;引入气流后,可以实现新的时间反演对称性破缺的量子自旋霍尔效应相,而增大气流强度,则可以实现量子反常霍尔效应相.这三个拓扑相可以通过自旋陈数来分类.通过有限元软件模拟了多个系统中边界态的传播,发现不同于量子自旋霍尔效应相,量子反常霍尔相系统的表面只支持一种自旋的边界态,并且它无需时间反演对称性保护.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号