首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
三羰基环戊二烯基钼负离子与1,3-二卤丙烷在一缩二乙二醇二甲醚介质中反应,生成环卡宾配合物CpMoX(CO2)CO(CH2)2CH2(X=Br.I)硅桥连双环戊二烯基三羰基钼负离子与1,3-二卤丙烷顺利地进行类似反应,生成相应的硅桥连双(环卡宾钼配合物)-E(C5H1MoX(CO)2CO(CH2)2CH2)2(E=Me2Si,Me2SiSiMe2,Me2SiOSiMe2),化合物硅氧硅桥联二茂二钼  相似文献   

2.
三羰基环戊二烯基钼负离子与1,3-二卤丙烷在一缩二乙二醇二甲醚介质中反应,生成环卡宾配合物CpMoX(CO)_2CO(CH_2)_2CH2(X=Br,I).硅桥连双环戊二烯基三羰基钼负离子与1,3-二卤丙烷顺利地进行类似反应,生成相应的硅桥连双[环卡宾钼配合物]──E[C_5H_4MoX(CO)_2]CO(CH_2)_2CH_2]_2(E=Me_2Si,Me2SiSiMe_2,Me2SiOSiMe_2).化合物硅氧硅桥联二茂二钼环卡宾配合物11的晶体结构经X射线衍射测定,晶体属三斜晶系,P1空间群,晶体学数据:a=0.8188(1)nm,b=1.045(3)nm,c=2.3252(4)nm,α=94.14(2)°,β=94.09(1)°,γ=102.48(2)°,V=1.9306nm ̄3,Z=2,D_c=1.854g/cm ̄3。  相似文献   

3.
标题化合物(Me_2SiSiMe_2)[η ̄5-(3-Me_3SiC_5H_3)Fe(CO)_2]_2/(μ-CO)_2(A)分子中的Fe-Fe键被钠汞齐还原断裂,生成相应的双铁负离子,分别与MeCOCl、PhCOCl、PhCH_2Cl、ClCH_2COOC_2H_5和Ph_3SnCl进行亲核取代反应,生成在铁原子上引入相应取代基的产物(Me_2SiSiMe_2)[η ̄5-(3-Me_3SiC_5H_3)Fe(CO)_2R]_2(R:MeCO(1),PhCO(2),PhCH_2(3),CH_2COOC_2H_5(4),Ph_3Sn(5),I(6))。A在氯仿中与碘反应,得到Fe-Fe断裂的双铁碘化物,但在苯中与过量碘反应,则得到Fe-I-Fe桥联的离子型化合物(Me_2SiSiMe_2)[η ̄5-(3-Me_3SiC_5H_3)Fe(CO)_2]_2I·I(7)。化合物6的晶体和分子结构经X射线衍射测定,6属单斜晶系,P21/c空间群,a=1.7217(4)nm,b=0.7753(2)nm,C=1.3629(7)nm,β=103.80(3)°,V=1.767(2)nm3,Z=4,Dc=1.6299·cm-1,最终偏差因子R=0.054。  相似文献   

4.
1,2-二(三甲硅基环戊二烯基)四甲基二硅烷与Fe(CO)_5在二甲苯中于105~110℃反应除分离到少量标题化合物(Me_2SiSiMe_2)[η-(3-Me_3SiC_5H_3Fe(CO)]_2(μ-CO)_2(5)外,主要是生成了脱Me_3Si基的产物(Me_2SiSiMe_2)[η-C_5H_4Fe(CO)]_2(μ-CO)_2(1)及1的热重排异构体[Me_2SiC5H4-Fe(CO)_2]_2(2).将5的二甲苯溶液加热回流18h,则转化为其异构体[Me_2Si(Me_3SiC_5H_3)Fe(CO)_2]_2(6).脱硅基发生在由相应反应物制备5的过程中。且脱硅基是与反应物中(Me_2SiSiMe_2)桥的存在有关.5的晶体结构经X射线衍射测定属单斜晶系,P2_1/m空间群,晶体学数据:a=0.6780(1)nm,b=2.2303(9)nm,c=0.9988(1)nn,;β=98.96(1)°,V=1.4960nm~3.Z=2,D_c=1.36g/cm~3.  相似文献   

5.
通过SnCl_2对化合物Me_2Si[η~5-C_5H_4Fe(CO)]_2(μ-CO)_2(Ⅰ)中Fe-Fe键的插入反应以及Ⅰ被Na-Hg齐还原所生成的相应双铁负离子{Me_2Si[η~5-C_5H_4Fe(CO)_2]_2}~(2-)与SnR_2Cl_2(R=Me,Ph)的亲核反应,合成了环状化合物Me_2Si[η~5-C_5H_4Fe(CO)_2]_2SnR_2[R=Cl(1),Me(2),Ph(3)]。以元素分析、IR和~1HNMR谱表征了它们的结构,并用X射线衍射测定了配合物3的晶体结构。3为单斜晶系,空间群P2_1/n,a=1.0384(3)nm,b=1.6384(1)nm,c=1.5762(5)nm,β=97.93(2)°,V=2.656(2)nm~3,Z=4,Dx=1.71g/mL。  相似文献   

6.
采用NMR方法考察了室温和低温(-78~-60℃)下Pd2X2(dpm)2(X=NCO^-,CH3CO^-2,SCN^-和NO^-3,dpm=Ph2PCH2PPh2)与H2S在CD2Cl2或CDCl3中的反应。结果表明,在X=NCO^-和CH3CO^-2的情况下,H2S优先与这些Pd配合物的阴离子作用生成相应的共轭酸HX和Pd2(SH)2(dpm)2,后者在H2S存在下又进一步转化为Pd2(SH)  相似文献   

7.
用X射线衍微法测定了由η^5-MeO2CC5H4(CO)3MoNa和〔(η^5-MeO2CC5H4)(CO)2W〕Fe-(CO)3Co(CO)3(μ3-S)的等瓣置换反应所生成的手性簇合物-〔(η^5-MeO2CC5H4)(CO)2Mo〕-〔(η^5-MeO2CC5H4)(CO)2W〕Fe(CO)3(μ3-S)的分子结构及晶体结构。晶体属P1空间群,晶胞参数a=0.87162(5)nm,b=0.8  相似文献   

8.
用X射线衍射法测定了由η~5-MeO_2CC_5H_4)(CO)_3MoNa和[(η~5-MeO_2CC_5H_4)(CO)_2W]Fe-(CO)_3Co(Co)_3(μ_3-S)的等瓣置换反应所生成的手性簇合物──[(η~5-MeO_2CC_5H_4)(CO)_2Mo]-[(η~5-MeO_2CC_5H_4)(CO)_2W]Fe(CO)_3(μ_3-S)的分子结构及晶体结构。晶体属P1空间群,晶胞参数α=0.87162(5)nm,b=0.76218(4)nm,c=1.87111(8)nm;α=94.164(4)°,β=97.979(2)°,γ=99.108(2)°,Z=2,μ=5.9cm~(-1)。最终的一致性因子R=0.036,Rw=0.037.该簇合物含MoWFeS四面体簇核,其中Mo、W原子以1:1的比例无序地分占了四面体的2个顶点.  相似文献   

9.
采用低温NMR技术考察了配合物Pd2X2(dpm)2(x=Cl^-,Br^-,I^-;dpm=Ph2PCH2PPh2)与H2S在CD2Cl2溶液中的反应,对反应中间体进行了详细的表征。结果表明,反应首先由H2S对Pd2X2(dpm)2的Pd-Pd键氧化加成,形成相应的带有Pd-H和Pd-SH的中间体,该中间体随后脱去H2并转化为相应的S^2-桥联的配合物Pd2X2(dpm)2(μ-S)。  相似文献   

10.
硅桥连配体E(Me_3SiC_5H_4)_2(E=SiMe_2(Ⅰ),Me_2SiOSiMe_2(Ⅱ),以下同)与Fe(CO)_5在二甲苯中加热反应,生成配合物E(η~5Me_3SiC_5H_3)_2[Fe(CO)]_2(μ-CO)_2.~1HNMR和四圆X射线衍射分析表明化合物1、2皆为顺式构型.反应过程中存在严重的脱硅基现象。1、2皆为单斜晶系,P2_1/m空间群。1:α=0.7359(3)nm,b=1.9409(1)nm,c=0.9383(5)nm,β=99.71(4)°,Z=2;2:α=0.6743(5)nm,b=2.2635(5)nm,c=1.0802(1)nm,β=108.1(2)°,Z=2。  相似文献   

11.
The reactions between uranium atoms and CH3X (X = F, Cl, and Br) molecules are investigated in a solid argon matrix. The major products formed on ultraviolet irradiation are the CH2=UHX methylidene complexes. DFT calculations predict these triplet ground-state structures to be stable and to have significant agostic interactions. Parallels between the uranium and analogous thorium methylidene complexes are discussed.  相似文献   

12.
The synthesis and the crystal and molecular structure of N(CH(2)CH(2)NMe)(3)P=CH(2) is reported. The P-N(ax) distance is rather long in N(CH(2)CH(2)NMe)(3)P=CH(2). The ylide N(CH(2)CH(2)NMe)(3)P=CH(2) proved to be a stronger proton acceptor than proazaphosphatrane N(CH(2)CH(2)NMe)(3)P, since it was shown to deprotonate N(CH(2)CH(2)NMe)(3)PH(+). The extremely strong basicity of the ylide is in accordance with its low ionization energy (6.3 eV), which is the lowest in the presently investigated series N(CH(2)CH(2)NMe)(3)P=E (E: CH(2), NH, lone pair, O and S), and to the best of our knowledge it is the smallest value observed for a non-conjugated phosphorus ylide. Computations reveal the existence of two bond strech isomers, and the stabilization of the phosphorus centered cation by electron donation from the equatorial and the axial nitrogens. Similar stabilizing effects operate in the case of protonation of E. A fine balance of these different interactions determines the P-N(ax) distance, which is thus very sensitive to the level of the theory applied. According to the quantum mechanical calculations, methyl substitution at the equatorial nitrogens flattens the pyramidality of this atom, increasing its electron donor capability. As a consequence, the PN(ax) distance in the short-transannular bonded protonated systems and the radical cations is longer by about 0.5 A in the N(eq)(Me) than in the N(eq)(H) systems. Accordingly, isodesmic reaction energies show that a stabilization of about 25 and 10 kcal/mol is attributable to the formation of the transannular bond in case of N(eq)(H) and the experimentally realizable N(eq)(Me) species, respectively.  相似文献   

13.
Formation and characterization of thorium methylidene CH2=ThHX complexes   总被引:1,自引:0,他引:1  
Lyon JT  Andrews L 《Inorganic chemistry》2005,44(23):8610-8616
Laser-ablated thorium atoms react with methyl fluoride to give the CH2=ThHF molecule as the major product observed and trapped in solid argon. Infrared spectroscopy, isotopic substitution, and density functional theoretical frequency calculations confirm the identification of this methylidene complex. The four strongest computed absorptions (Th-H stretch, Th=C stretch, CH2 wag, and Th-F stretch) are the four vibrational modes observed. The CH2=ThHCl and CH2=ThHBr species formed from methyl chloride and methyl bromide exhibit the first three of these modes in the infrared spectra. The computed structures (B3LYP and CCSD) show considerable agostic interaction, similar to that observed for the Group 4 CH2=MHX (M = Ti, Zr, Hf) methylidene complexes, and the agostic angle and C=Th bond length decrease slightly in the CH2=ThHX series (X = F, Cl, Br).  相似文献   

14.
Infrared spectrum and structure of CH2=ThH2   总被引:1,自引:0,他引:1  
The actinide methylidene CH2=ThH2 molecule is formed in the reaction of laser-ablated thorium atoms with CH4 and trapped in a solid argon matrix. The five strongest infrared absorptions computed by density functional theory (two ThH2 stretches, C=Th stretch, CH2 wag, and ThH2 bend) are observed in the infrared spectrum. The computed structure shows considerable agostic bonding distortion of the CH2 and ThH2 subunits in the simple actinide methylidene dihydride CH2=ThH2 molecule, which is similar to the transition metal analogue, CH2=HfH2.  相似文献   

15.
Reactions of group 5 metal atoms and methyl halides give carbon-metal single, double, and triple bonded complexes that are identified from matrix IR spectra and vibrational frequencies computed by DFT. Two different pairs of complexes are prepared in reactions of methyl fluoride with laser-ablated vanadium and tantalum atoms. The two vanadium complexes (CH(3)-VF and CH(2)=VHF) are persistently photoreversible and show a kinetic isotope effect on the yield of CD(2)=VDF. Identification of CH(2)=TaHF and CH[triple bond]TaH(2)F(-), along with the similar anionic Nb complex, suggests that the anionic methylidyne complex is a general property of the heavy group 5 metals. Reactions of Nb and Ta with CH(3)Cl and CH(3)Br have also been carried out to understand the ligand effects on the calculated structures and the vibrational characteristics. The methylidene complexes become more distorted with increasing halogen size, while the calculated C=M bond lengths and stretching frequencies decrease and increase, respectively. The anionic methylidyne complexes are less favored with increasing halogen size. Infrared spectra show a dramatic increase of the Ta methylidenes upon annealing, suggesting that the formation of CH(3)-TaX and its conversion to CH(2)=TaHX require essentially no activation energy.  相似文献   

16.
The internal rotations in acrylic and methacrylic acids CH2=CX-COOH and their amides CH2=CX-CONH2 (X is H or CH3) were investigated by DFT-B3LYP calculations with 6-311+G** basis set. The potential energy curves were consistent with two minima that correspond to planar cis and trans conformation in the case of the acids (or cis and near-trans forms in the case of the amides). Acrylic acid and acrylamide were predicted to have the cis form as the low and predominant conformation of the molecules. In the case of the methacrylic acid and methacrylamide, the conformational relative stability was predicted to reverse as going from the acrylic to the metha compounds. The trans conformer in methacrylic acid or the near-trans in methacrylamide were predicted to be thermodynamically low energy structures of the molecules. The CCCO rotational barrier was calculated to vary from 4 to 6kcal/mol in the four molecules. The OCOH and OCNH torsional barriers were calculated to be about 13 and 22kcal/mol in the acids and the amides, respectively. The vibrational frequencies of methacrylic acid and methacrylamide were computed at the DFT-B3LYP/6-311+G** level and reliable vibrational assignments were made on the basis of normal coordinate analyses and comparison with experimental data of both molecules in their low energy conformations.  相似文献   

17.
Methane activation by group 5 transition-metal atoms in excess argon and the matrix infrared spectra of reaction products have been investigated. Vanadium forms only the monohydrido methyl complex (CH3-VH) in reaction with CH4 and upon irradiation. On the other hand, the heavier metals form methyl hydride and methylidene dihydride complexes (CH3-MH and CH2=MH2) along with the methylidyne trihydride anion complexes (CHMH3-). The neutral products, particularly the methylidene complex, increase markedly on irradiation whereas the anionic product depletes upon UV irradiation or addition of a trace of CCl4 or CBr4 to trap electrons. Other absorptions that emerge on irradiation and annealing increase markedly at higher precursor concentration and are attributed to a higher-order product ((CH3)2MH2)). Spectroscopic evidence suggests that the agostic Nb and Ta methylidene dihydride complexes have two identical metal-hydrogen bonds.  相似文献   

18.
Andrews L  Cho HG  Wang X 《Inorganic chemistry》2005,44(13):4834-4842
Laser-ablated titanium atoms react with methane to form the insertion product CH3TiH, which undergoes a reversible photochemical alpha-H transfer to give the methylidene complex CH2=TiH2. On annealing a second methane activation occurs to produce (CH3)2TiH2. These molecules are identified from matrix infrared spectra by isotopic substitution (CH4, 13CH4, CD4, CH2D2) and comparison to DFT frequency calculations. The computed planar structure for singlet ground-state CH2=TiH2 shows CH2 distortion and evidence for agostic bonding (H-C-Ti, 91.4 degrees), which is supported by the spectra for CHD=TiHD.  相似文献   

19.
IntroductionThe greatsynthetic utility of organolithium reagents has been extended by the introduc-tion ofα-lithium-etherreagents[1— 4] .Those reagentsareeasily prepared,and they can be usedas anionic resources to synthesize a large variety of compounds stereo-selectively[5— 8] .Fur-thermore,such reagents can react with nucleophiles like RLi,only a typical reaction of car-benoid[9,1 0 ] .Though the ambidentnature isof greatinterest,only a little work has been doneon model molecule Li CH2 …  相似文献   

20.
FTIR-smog chamber techniques were used to study the products of the Cl atom and OH radical initiated oxidation of CF3CH=CH2 in 700 Torr of N2/O2, diluent at 296 K. The Cl atom initiated oxidation of CF3CH=CH2 in 700 Torr of air in the absence of NOx gives CF3C(O)CH2Cl and CF3CHO in yields of 70+/-5% and 6.2+/-0.5%, respectively. Reaction with Cl atoms proceeds via addition to the >C=C< double bond (74+/-4% to the terminal and 26+/-4% to the central carbon atom) and leads to the formation of CF3CH(O)CH2Cl and CF3CHClCH2O radicals. Reaction with O2 and decomposition via C-C bond scission are competing loss mechanisms for CF3CH(O)CH2Cl radicals, kO2/kdiss=(3.8+/-1.8)x10(-18) cm3 molecule-1. The atmospheric fate of CF3CHClCH2O radicals is reaction with O2 to give CF3CHClCHO. The OH radical initiated oxidation of CxF2x+1CH=CH2 (x=1 and 4) in 700 Torr of air in the presence of NOx gives CxF2x+1CHO in a yield of 88+/-9%. Reaction with OH radicals proceeds via addition to the >C=C< double bond leading to the formation of CxF2x+1C(O)HCH2OH and CxF2x+1CHOHCH2O radicals. Decomposition via C-C bond scission is the sole fate of CxF2x+1CH(O)CH2OH and CxF2x+1CH(OH)CH2O radicals. As part of this work a rate constant of k(Cl+CF3C(O)CH2Cl)=(5.63+/-0.66)x10(-14) cm3 molecule-1 s-1 was determined. The results are discussed with respect to previous literature data and the possibility that the atmospheric oxidation of CxF2x+1CH=CH2 contributes to the observed burden of perfluorocarboxylic acids, CxF2x+1COOH, in remote locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号