首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
以天然产物没食子酸为原料经醚化、酯化、酰肼化、成盐、闭环、硫醚化六步反应合成了6个2-取代硫醚-5-(3,4,5-三甲氧基苯基)-1,3,4-噻二唑类衍生物, 釆用铟催化下水相合成目标化合物8, 具有反应条件温和, 合成收率高的特点; 用IR, 1H NMR, 13C NMR和元素分析对各化合物进行了表征及结构确证, 并用X射线单晶衍射法测定了化合物8a [2-(2-氯-5-吡啶甲基)硫醚-5-(3,4,5-三甲氧基苯基)-1,3,4-噻二唑]的晶体结构, 采用MTT法进行了新化合物抑制PC3和BGC-823癌细胞体外试验, 结果表明在5μmol•L-1浓度下化合物8e对PC3的抑制活性为55.71%. 化合物8b对BGC-823细胞抑制活性为66.21%.  相似文献   

2.
徐畅  安悦  朱浩天  林越  王日楠 《应用化学》2015,32(7):748-758
以2-氨基-5-取代-1,3,4-噻二唑为起始原料,设计合成16个含1,3,4-噻二唑取代基的中间体4a~4p,进而使其在POCl3及DMF作用下反应得到16个3-取代-1-(5-芳基-1,3,4-噻二唑-2-基)-1H-吡唑-4-甲醛化合物5a~5p,所合成的32个化合物均为新化合物。 采用溶液结晶法获得化合物5a晶体,通过X射线单晶衍射测得该晶体属于三斜晶系,P-1空间群。 借助 IR、1H NMR、元素分析等技术手段对合成的所有化合物结构进行了表征。 利用微量稀释法测试了化合物5a~5p的抑菌活性,结果表明,部分化合物对金黄色葡萄球菌具有抑制作用,在相同条件下化合物5h的抑菌活性最好,抑菌率达到65.30%。  相似文献   

3.
以2-巯基-5-(2-羟基苯基)-1,3,4-噻二唑为原料,经硫醚化、肼解、腙化反应合成了9个5-(2-羟基苯基)-1,3,4-噻二唑-2-硫基乙酰腙化合物,其结构由1H NMR,13C NMR,IR,MS表征和元素分析,并初步研究了目标化合物的抑菌活性.结果表明它们大多数具有优良的抑菌活性,芳香醛-5-(2-羟基苯基)-1,3,4-噻二唑-2-硫基乙酰腙(4a~4h)比2-丁烯醛-5-(2-羟基苯基)-1,3,4-噻二唑-2-硫基乙酰腙(4i)有更好的抑菌活性.  相似文献   

4.
以取代的苯乙酸为起始原料,通过成环、偶联、脱保护基并引入苯磺酰胺等反应得到了系列2,5-二取代-1,3,4-噻二唑类化合物,并利用1H NMR,13C NMR和HRMS对目标化合物进行了结构表征.用四甲基偶氮唑盐(MTT)法测试了目标化合物体外抑制前列腺癌细胞(PC-3)、乳腺癌细胞株(MDA-MB-231)和白血病细胞(K562)等肿瘤细胞的增殖活性.结果显示,部分目标化合物具有较好的抗肿瘤细胞增殖活性,其中(S)-N-(5-([1,1'-联苯]-4-基甲基)-1,3,4-噻二唑-2-基)-2-氨基-3-(4-溴苯基)丙酰胺(6a)和(S)-N-(5-([1,1'-联苯]-4-基甲基)-1,3,4-噻二唑-2-基)-2-氨基-3-苯基丙酰胺(6b)对K562细胞的活性与阳性对照药棉酚相当.  相似文献   

5.
以2-[(1,3,4-噻二唑基-2-氨基)甲基]苯酚和CH2Cl2为原料,首次采用相转移催化法合成了一系列新型3-(1,3,4-噻二唑基)-1,3-苯并噁嗪类化合物,产率为47%~62%.研究了相转移催化剂的用量、反应物用量、反应温度等对反应产率的影响.产物结构用IR,1H NMR,13C NMR和元素分析进行了表征.初步研究了目标化合物的杀菌活性,大部分化合物具有一定的杀菌活性.  相似文献   

6.
以2-氨基-5-取代苯氧甲基-1,3,4-噻二唑(1)为起始原料, 合成了中间体2-氯乙酰氨基-5-取代苯氧甲基-1,3,4-噻二唑)-2-乙酰亚胺(2)和2-(5-取代苯氧甲基-1,3,4-噻二唑-2-亚胺基)-4-噻唑啉酮(3), 化合物3进一步与取代苯甲醛发生类Knoevenagle缩合反应, 得到了一系列2-(5-取代苯氧甲基-1,3,4-噻二唑-2-亚胺基)-5-(取代苯基亚甲基)-4-噻唑啉酮类化合物4a4p. 目标化合物4a4p的结构经IR, 1H NMR和元素分析确证.  相似文献   

7.
分别在微波辐射和常规加热条件下, 通过2-氨基-5-(1-苯基-3-甲基-5-氯吡唑-4-基)-1,3,4-噻二唑(1)与(未)取代苯甲酰氯(2a~2j)反应, 合成了一系列未见文献报道的2-(未)取代苯甲酰胺基-5-(1-苯基-3-甲基-5-氯吡唑-4-基)-1,3,4-噻二唑衍生物(3a~3j). 标题化合物的结构经元素分析, IR, 1H NMR确证.  相似文献   

8.
以糠氯酸为原料,与叔丁基肼盐酸盐环合制得2-叔丁基-4,5-二氯-3(2H)哒嗪酮,随后与新合成的5-胺基-1,3,4-噻二唑-2-硫醇衍生物发生亲核取代反应,反应合成了11个新型1,3,4-噻二唑硫醚哒嗪酮衍生物(7a~7k)。化合物的结构均经1H NMR、13C NMR、IR、ESI-MS和元素分析表征。采用生长速率法测试了化合物对小麦赤霉病菌(G. zeae)、辣椒枯萎病菌(F. oxysporum)、苹果腐烂病菌(C. mandshurica)3种菌株的杀菌活性,在100 mg/L浓度下,化合物7a对小麦赤霉病菌的抑制率38.6%;7f对辣椒枯萎病菌的抑制率为54.6%。   相似文献   

9.
N-1,3,4-噻二唑-2-基取代Schiff碱的合成及光学性质研究   总被引:1,自引:0,他引:1  
本文以对甲苯磺酸为催化剂,通过2-氨基-5-烃基-1,3,4-噻二唑与水杨醛的反应合成了一系列N-1,3,4-噻二唑-2-基取代Schiff碱类化合物2,利用IR,1H NMR,13C NMR和元素分析表征了化合物的结构。采用紫外光谱和荧光光谱研究了化合物的光谱性能,结果表明,所合成的化合物2具有较强的荧光发射光谱,λem为554~573 nm。  相似文献   

10.
韩锋  万嵘  王瑶  王朋  王锦堂 《有机化学》2010,30(1):132-136
以2-氨基-5-取代苯基-1,3,4噻二唑和2,6-二氟苯甲酰异氰酸酯为起始原料,合成了10个未见文献报道的含1,3,4-噻二唑环的芳酰基脲类衍生物。通过1H NMR,IR,ESI-MS和元素分析确定化合物的结构。初步生物活性测试表明,此类化合物具有一定的杀虫活性,其中化合物3d (3,5-(CH3)2)和3g (4-C4H9)对蚕豆蚜的杀虫死亡率达到90%以上.  相似文献   

11.
A series of 2-(5-methyl-3-(4-chloro/trifluoromethylphenyl)isoxazol-4-yl)-5-arylamino-1,3,4-oxadiazoles were synthesized from 4-chloro/trifluoromethyl benzaldehyde, ethyl acetoacetate, hydroxylamine hydrochloride, hydrazine hydrate, and aryl isocyanate by multi-step reactions. The structures of the target compounds were elucidated by IR, 1H NMR, MS, and elemental analysis. All these compounds were tested for in vitro antifungal activities against Botrytis cinerea and Rhizoctonia cerealis by the mycelium growth rate method, and the results indicated that some compounds displayed high antifungal activity against Botrytis cinerea.  相似文献   

12.
采用活性基团拼接法, 以2-巯基-5-(3,4,5-三甲氧基苯基)-1,3,4-噻二唑为原料, 经硫醚化、肼解、腙化反应合成了8个芳醛-[5-(3,4,5-三甲氧基苯基)-1,3,4-噻二唑-2-巯基]-乙酰腙衍生物, 并经过元素分析, IR, 1H NMR, 13C NMR对其结构进行了确认. 初步生物活性测试表明, 部分化合物具有一定的抑菌生物活性.  相似文献   

13.
In this study, a new series of substituted imidazo[2,1‐b][1,3,4]thiadiazole derivatives were synthesized. To this end, first 2‐amino‐1,3,4‐thiadiazole derivatives (compounds 2a and 2b ), the starting materials, were synthesized with high yields (82% and 79%, respectively). Then imidazo[2,1‐b][1,3,4]thiadiazole derivatives ( 4 – 16 ), the target compounds, were synthesized from reactions of 2‐amino‐1,3,4‐thiadiazole derivatives ( 2a and 2b ) with 2‐bromoacetophenone derivatives ( 3a – 3i ) (in yields of 52% to 71%). All of the synthesized compounds were characterized by 1H NMR, 13C NMR, Fourier transform infrared, elemental analysis, mass spectroscopy, and X‐ray diffraction analysis (compounds 4 – 12 , 14 , and 15 ) techniques. In vitro antifungal activity tests were performed for all of the synthesized compounds. Inhibition zones, percentage of inhibition, minimum fungicidal activity, minimum inhibitory concentration, and lethal dose values of the target compounds were determined against some plant pathogens. According to the results of the biological activity tests, all of the synthesized compounds showed moderate to high levels of antifungal activity. Theoretical calculations were performed to support the experimental results. The geometric parameters of selected compounds ( 5 , 6 , and 8 ) were optimized using the density functional theory B3LYP/6‐31G(d) method in the Gaussian 09W package program, and the frontier molecular orbitals (highest occupied molecular orbital–lowest unoccupied molecular orbital) were calculated theoretically. Finally, molecular docking studies were performed for antifungal activity studies of the selected compounds and to determine whether or not these compounds could be inhibitor agents for the 2RKV protein structure.  相似文献   

14.
In this study, thioether-bridged imidazo[2,1-b][1,3,4]thiadiazole derivatives that contained both imidazole and 1,3,4-thiadiazole (compounds 7a-7i and 8a-8i ) were synthesized from the reactions of 2-amino-1,3,4-thiadiazole with phenacyl bromide ( 6a - 6i ) (at yields of 59% to 74%). The structure of the synthesized compounds was characterized using 1H NMR, 13C NMR, Fourier-transform infrared spectroscopy, elemental analysis, mass spectroscopy, and X-ray diffraction analysis. Mycelial growth, mycelial growth inhibition, minimum inhibitory concentration, minimum fungicidal concentration, and lethal dose values against various plant pathogenic fungi were determined for all of the target compounds synthesized in the study. The test results showed that most of the compounds had moderate to good antifungal activity. In addition, the absorption, distribution, metabolism, excretion (ADME) parameters of the compounds were calculated, and it was observed that all of the compounds met the drug-likeness rules in general. Finally, using docking simulations, it was found that compounds 7h , 7i , 8h , and 8i showed high affinity to PDB ID:5TZ1, which is an CYP51 antifungal target structure.  相似文献   

15.
A new series of 1,8-bis(4-((5-phenyl-1,3,4-oxadiazol-2-yl) methoxy)-substituted aryl) naphthalene-1,8-dicarboxamide derivatives (6a–j) were synthesized in the presence of POCl3 and obtained good yields. All the synthesized novel compounds were characterized by IR, 1H NMR, 13C NMR, HRMS spectroscopic data and elemental analysis. All the synthesized compounds evaluated for their antibacterial and antifungal activities. The antibacterial activity screened against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli and used standard reference drug ciprofloxacin. The antifungal activity screened against two pathogenic fungal strains Aspergillus niger and Candida albicans used a reference standard drug Voriconazole. All these compounds (6a–j) demonstrate good antibacterial and antifungal activity. Among them, compounds 6h and 6c show highest antibacterial and antifungal activity.  相似文献   

16.
A series of 3-chloro-1-(aryl)-4-(2-(2-chloro-6-methylquinolin-3-yl)-5-(pyridin-4-yl)-1,3,4-oxadiazol-3(2H)-yl)-4-ethyl-azetidin-2-ones (V)112 have been synthesized and characterized by IR, 1H NMR, 13C NMR and mass spectra. Synthesized compounds were screened for their antibacterial activity against four different strains like Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pyogenes, while antifungal activity was determined against three different strains like Candida albicans, Aspergillus niger and Aspergillus clavatus. On the basis of statistical analysis, it has been observed that compounds gave significant co-relation.  相似文献   

17.
A series of novel nopol derivatives bearing the 1,3,4-thiadiazole-thiourea moiety were designed and synthesized by multi-step reactions in search of potent natural product-based antifungal agents. Their structures were confirmed by FT-IR, NMR, ESI-MS, and elemental analysis. Antifungal activity of the target compounds was preliminarily evaluated by in vitro methods against Fusarium oxysporum f. sp. cucumerinum, Cercospora arachidicola, Physalospora piricola, Alternaria solani, Gibberella zeae, Rhizoeotnia solani, Bipolaris maydis, and Colleterichum orbicalare at 50 µg/mL. All the target compounds exhibited better antifungal activity against P. piricola, C. arachidicola, and A. solani. Compound 6j (R = m, p-Cl Ph) showed the best broad-spectrum antifungal activity against all the tested fungi. Compounds 6c (R = m-Me Ph), 6q (R = i-Pr), and 6i (R = p-Cl Ph) had inhibition rates of 86.1%, 86.1%, and 80.2%, respectively, against P. piricola, much better than that of the positive control chlorothalonil. Moreover, compounds 6h (R = m-Cl Ph) and 6n (R = o-CF3 Ph) held inhibition rates of 80.6% and 79.0% against C. arachidicola and G. zeae, respectively, much better than that of the commercial fungicide chlorothalonil. In order to design more effective antifungal compounds against A. solani, analysis of the three-dimensional quantitative structure–activity relationship (3D-QSAR) was carried out using the CoMFA method, and a reasonable and effective 3D-QSAR model (r2 = 0.992, q2 = 0.753) has been established. Furthermore, some intriguing structure–activity relationships were found and are discussed by theoretical calculation.  相似文献   

18.
A series of novel Mannich base derivatives (E1–E15) of 5‐aryl‐1,3,4‐oxadiazole‐2‐thione with substituted pyrimidine were synthesized and characterized by elemental analysis, IR, 1H‐NMR. The antifungal activities of these compounds were also originally studied. The results showed that most of the title compounds exhibited relatively good fungicidal activities. Especially compounds E8 and E13 showed better antifungal activity than comparison compound hymexazol. The relationship of structure and activity revealed that the presence of the methyl group at four and six positions of pyrimidine ring remarkably enhanced the antifungal activity of title compounds.  相似文献   

19.
In the present study, a novel series of 2-{5-[4-(1-aza-2-(2-thienyl)vinyl)phenyl](1,3,4-oxadiazol-2-ylthio)}-N-arylacetamides (IV)1–12 were synthesized and tested for their antimicrobial activity. Newly synthesized compounds were screened for their antibacterial and antifungal activities on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus pyogenes, Candida albicans, Aspergillus niger and Aspergillus clavatus. The chemical structures of newly synthesized compounds were elicited by IR, 1H NMR, 13C NMR and mass spectral data. The synthesized bio-active compounds exhibited excellent to moderate antimicrobial activity. Compounds (IV)5, (IV)6 and (IV)7 possess excellent antibacterial activity whereas compounds (IV)6, (IV)9 and (IV)11 possess excellent antifungal activity.  相似文献   

20.
A series of new N- and S-substituted 1,3,4-oxadiazole derivatives were synthesized. 5-Pyridin-3-yl-3-[2-(5-thioxo-4,5-dihydro-l,3,4-thiadiazol-2-yl)ethyl]-1,3,4-oxadiazole-2(3H)-thione and 5-[(5-(pyridin-3-yl)-1,3,4-oxadiazol-2-ylthio)methyl]-N-phenyl-1,3,4-thiadiazol-2-amine were formed by cyclization of 3-(5-pyridin-3-yl-2-thioxo-1,3,4-oxadiazol-3(2H)-ylpropanimidohydrazide and 2-[(5-pyridin-3-yl-1,3,4-oxadiazol-2-yl)thio]thiosemicarbazide with CS2 and H2SO4. On the other hand, a number of new bicyclic 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole derivatives were synthesized. 6-Pyridin-3-ylbis[1,2,4]‐triazolo[3,4-b:4′,3′-d][1,3,4]thiadiazole-3(2H)-thione was synthesized by reaction of 6-(hydrazino)-3-pyridine-3-yl[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole with CS2/KOH/EtOH. The structures of the newly synthesized compounds were elucidated by the spectral and analytical data IR, Mass, and 1H NMR spectra. Correspondence: Adel A.-H. Abdel-Rahman, Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koam, Egypt; Wael A. El-Sayed, National Research Centre, Department of Photochemistry, Cairo, Egypt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号