首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
采用LiOH·H~2O为锂源,化学纯MnO~2(CMD)为锰源,NaI为添加剂,乙腈为非水介质,在常温常压下合成了锂离子二次电池正极材料Li~0~.~7~5Na~0~.~2~5MnO~1~.~9~2I~0~.~0~8化合物,并采用XRD,BET,TEM及电化学测试等手段对该化合物进行了表征。结果表明该化合物原料呈非晶态超细粉末,平均粒径在45~60nm之间,具有较大的比表面积(35~48m^2/g)。经260℃真空干燥后,样品转化为纳米晶态,以该化合物作正极材料与Li作对电极构成的锂电池,在1.5~4.3V之间和0.353mA/cm^2条件下恒流充放电,首次充放电比容量超过280(mA·h)/g。充放电效率大于95%。循环20次后,其充放电比容量仍大于260(mA·h)/g,是很有应用前景的锂离子二次电池正极材料。  相似文献   

2.
采用水热法结合热处理制备了具有高结晶性的V2O5,利用X射线衍射仪、球差校正扫描透射电子显微镜和扫描电子显微镜对V2O5的物相和形貌进行了表征,发现制备的V2O5择优取向生长并且具有良好的结晶性.电化学测试结果表明,以V2O5为正极材料的电池在电流密度为0.5 A/g下首次放电比容量约为340 mA·h/g.在电流密度为5 A/g下电池的首次放电比容量为170 mA·h/g,并且循环100次后衰减为50 mA·h/g.对不同放电态的V2O5正极材料的物相进行了分析,得出了V2O5正极材料在充放电过程中发生了锌离子和质子共嵌入(脱出)的反应机理;V2O5正极材料在充放电过程中发生的非晶化和副产物碱式硫酸锌的生成是导致以V2O5作为水系锌离子电池正极材料的电池系统发生容量衰减的主要原因.  相似文献   

3.
LiNi_(0.8)Co_(0.2)O_2的络合法合成及其电化学性能研究   总被引:6,自引:0,他引:6  
采用络合法制备了锂离子电池的活性正极材料LiNi0.8Co0.2O2粉体,该合成材料结晶良好,层状结构发育完善.电池充放电测试表明,作为锂离子电池正极,其电化学性能与LiNi0.8Co0.2O2粉体的合成温度有关,其中以900℃下合成得到的材料性能最优:第1次放电比容量高达142mAh/g,循环30次后可逆比容量仍高达122mAh/g,容量损失为14.5%.文中对容量退化的原因进行了分析.  相似文献   

4.
掺碳制备锂离子电池正极材料LiFePO4   总被引:3,自引:0,他引:3  
采用固相法合成LiFePO4和掺碳的LiFePO4,并对不同掺碳量的LiFePO4进行电化学性能测试,室温条件下,在0.1 C倍率下充放电,样品d(ωC=8.5%)的初始放电容量为151.7 mA·h/g.10次循环后,其放电比容量仍有149.5 mA·h/g,容量损失较小.这表明,在合适的制备工艺条件下,掺碳能获得结构稳定、电化学性能良好的锂离子电池正极材料LiFePO4.  相似文献   

5.
用高分子分散及微波-固相复合加热技术合成了层状锂离子电池正极材料LiNi0.5Co0.5O2. 采用循环伏安、充放电循环、扫描电子显微镜(SEM)以及X射线粉末衍射(XRD)等测试技术, 研究了煅烧条件对材料微观形貌、相结构以及电化学性能的影响规律. 研究结果表明: 在750 ℃煅烧4 h即可得到形状为类球形的纯相层状LiNi0.5Co0.5O2正极材料, 该材料的最大放电容量达到154 mA·h/g, 循环10周后放电容量仍保持在148 mA·h/g以上.  相似文献   

6.
采用改进的高温固相法合成了阴阳离子复合掺杂改性的锂离子电池尖晶石结构正极材料LiMn1.98Cr0.02O4-yCly(y=0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10). 采用X射线衍射手段对材料的晶体结构进行了表征. 从材料的晶体结构、充放电容量、循环性能和倍率放电特性等方面分析了复合掺杂在稳定晶体结构和改善材料电化学性能方面的作用. 实验结果表明, 由于复合掺杂的综合作用, 改性后的材料既保持了高的初始容量, 又具有优良的循环性能, 倍率放电性能也得到了有效的改善. 其中LiMn1.98Cr0.02O3.96Cl0.04的综合性能最优, 初始放电比容量达到127 mA·h/g以上, 循环50次后仍有110 mA·h/g的放电比容量.  相似文献   

7.
采用溶胶-凝胶法合成Al掺杂富锂锰基Li1.2Mn0.54-xAlxNi0.13Co0.13O2x=0、0.03)锂离子电池正极材料,之后采用一步液相法制备Li2WO4包覆层,系统地研究了Al掺杂和Li2WO4包覆双效改性对富锂锰基正极材料电化学性能的影响.结果表明,Al掺杂后明显提升富锂锰基正极材料的循环稳定性,包覆层Li2WO4明显改善其倍率性能和放电平台电压衰减问题.Li2WO4包覆量为5% Li1.2Mn0.51Al0.03Ni0.13Co0.13O2正极材料在2.0~4.8 V充放电电压区间及1000 mA·g-1电流密度下比容量仍高达110 mAh·g-1左右,同时在100 mA·g-1的电流密度下循环300次容量保持率为78%,而且循环过程中放电平台电压衰减也明显减缓.该工作为解决锂离子电池富锂锰基正极材料循环稳定性和平台电压衰减提供了新的思路.  相似文献   

8.
通过共沉淀法制备了M(OH)2(M=Mn, Ni)前驱体, 并与LiOH混合, 合成了锂离子电池富锂正极材料Li[NixLi1/3-2x/3Mn2/3-x/3]O2, 采用XRD、SEM和充放电实验对其进行表征. 研究结果表明, Li, Ni, Mn原子在M层中呈有序分布, 形成超结构; 富锂正极材料由亚微米的一次粒子团聚组成1~3 μm颗粒; 在2.0~4.8 V电位范围内, 充放电电流密度为10 mA/g时, 富锂正极材料表现出很高的可逆比容量, 达到200~240 mA·h/g, 同时具有良好的循环可逆性能.  相似文献   

9.
锂离子电池用富锂层状正极材料   总被引:1,自引:0,他引:1  
吴承仁  赵长春  王兆翔  陈立泉 《化学进展》2011,23(10):2038-2044
正极材料与负极材料是锂离子电池重要组成部分。目前锂离子电池负极材料比容量通常在300mAh/g以上,而正极材料比容量始终徘徊在150mAh/g。正极材料正在成为锂离子电池性能进一步提升的瓶颈。富锂层状正极材料是一类新型正极材料,其可逆容量在200mAh/g以上,其高容量特性引起人们的广泛关注。这类材料可以用xLi2MO3·(1-x)LiM'O2 (M 为Mn, Ti, Zr之一或任意组合; M'为Mn, Ni, Co之一或任意组合; 0≤x≤1)形式表示。由于其组成与结构的特殊性,这类富锂层状正极材料的充放电机理也不同于其它含锂过渡金属氧化物正极材料。本文介绍富锂层状正极材料的合成、结构与充放电机理,重点介绍近年来通过改性提高其电化学性能方面的研究进展,指出目前富锂材料研究中存在的问题,探讨未来的研究重点。  相似文献   

10.
陈丽辉  吴秋晗  潘佩  宋子轩  王锋  丁瑜 《应用化学》2018,35(11):1384-1390
采用模板导向法和高温固相法制备尖晶石型八面体结构的LiMn2O4锂离子电池正极材料,研究了该材料的结构和电化学性能。 电化学性能研究表明,该电极材料具有良好的循环稳定性和倍率性能,在2.5~4.5 V电压范围,电流密度为100 mA/g时,首周充放电比容量分别为147和179 mA·h/g,循环50周后,其充放电比容量仍分别保持在180/181 mA·h/g。 优良的电化学性能可能归因于尖晶石LiMn2O4的形貌结构特征,该方法为制备锂离子电池正极材料提供了思路和依据。  相似文献   

11.
锂离子电池锡基复合氧化物负极材料的研究   总被引:4,自引:1,他引:4  
采用共沉淀法制备了SnSbO2.5和SnGeO3两种锡基复合氧化物粉末.XRD分析表明,这两种锡基复合氧化物的共同特点是在27°~28°处有波峰,属无定型结构.将其分别作为锂离子电池负极材料的活性物质,利用恒电流电池测试仪研究它们的电化学性能.实验表明,这两种锡基复合氧化物都有较高的电化学容量,SnSbO2.5的可逆容量为1200mA·h/g,SnGeO3的可逆容量为750mA·h/g.这两种锡基复合氧化物的电化学容量远高于碳材料(石墨的理论容量为372mA·h/g),因此,这两种锡基复合氧化物可以作为锂离子电池负极材料的候选材料.  相似文献   

12.
锂离子电池的有机正极材料由于具有比容量高、环境友好和廉价等优点,近年来成为研究的热点.但是,有机电极材料在液态电解液中的溶解流失易导致其容量迅速衰减,严重限制了它们的实际应用.本工作基于聚(甲基丙烯酸酯)/聚乙二醇的准固态电解质,考察了以柱[5]醌为正极的准固态锂二次电池的电化学性能.结果显示,柱[5]醌正极不仅保持了高容量的特性(首次放电容量410 mA h/g),并且循环寿命得到了有效提高.0.2 C下循环100周后,电极的容量保持率为88.5%,显示了柱[5]醌在高比能量准固态锂离子电池中的应用潜力.  相似文献   

13.
金属并联电解制备LiCo_xNi_(1-x)O_2正极材料   总被引:1,自引:0,他引:1  
应用钴、镍金属并联电解法制备锂离子电池正极材料.电解反应时,调节流过钴、镍电极上的电流比值及控制合适的电流密度,可生成均匀的CoxNi1-x(OH)2前驱体.研究表明,该法简单且无污染.合成的LiCo0.3Ni0.7O2正极材料充放电的容量较高,循环稳定性也较好,其初始放电容量为163mAh/g,经过50次充放电循环后放电容量仍可保持140mAh/g.  相似文献   

14.
用液相沉淀-热解法合成了一系列结构和组成不同的锂离子电池纳米锡锌复合氧化物贮锂材料, 通过XRD、TEM和电化学测试对材料进行了表征. 测试结果表明, 非晶态ZnSnO3负极材料的初始可逆贮锂容量为844 mA·h/g, ZnO·SnO2负极材料的初始可逆贮锂容量为845 mA·h/g, SnO2·Zn2SnO4复合物负极材料初始可逆贮锂容量为758 mA·h/g, 循环10周后, 三者的充电容量分别为695, 508和455 mA·h/g, 表明非晶态结构的锡锌复合氧化物具有较好的电化学性质, 随着样品中晶体的形成, 该类型负极材料的贮锂性能下降.  相似文献   

15.
LiFePO4的制备、结构与电性能研究   总被引:1,自引:1,他引:0  
谢辉  周震涛 《电化学》2006,12(4):378-381
应用高速球磨-高温固相反应法于不同煅烧温度(400~700℃)下合成L iFePO4锂离子电池正极材料,X-射线衍射、扫描电镜和恒电流充放电等测试表明,煅烧温度对合成的L iFePO4晶体结构、表观形貌以及电化学性能均有很大影响;经600℃煅烧得到的L iFePO4样品具有良好的充放电性能,以0.1C倍率充放电,首次放电比容量为128.8 mAh/g,第15次放电比容量为129.1 mAh/g,充放电效率在99.7%以上;其高温充放电性能亦佳.  相似文献   

16.
层状Li_(0.78)Ni_(0.3)Mn_(0.7)O_2正极材料的合成与性质研究   总被引:5,自引:0,他引:5  
钟辉  许惠  汪文成  周燕芳 《化学学报》2003,61(4):510-513
以层状Li0.78Ni0.3Mn0.7O2为前驱体,通过离子交换,合成出具有O2型结构特 征的掺镍层状Li0.78Ni0.3Mn0.7O2锂离子电池正极材料,并进行了XRD,SEM和电性 能研究.电性能测试分析表明该材料在2.0—4.2V区仅存在一个充放电平台,可 逆比容量达180mAh.g^-1,经20次充放电循环后,仍能保持88%的容量,显示出较 好的循环稳定性.  相似文献   

17.
采用微波法合成锂离子电池正极材料LiFePO4,并通过X射线衍射(XRD)、电子扫描电镜(SEM)和恒电流充放电实验,研究了在一定微波功率下合成出的材料的性能。结果表明,当含碳量在5%时,采用0.1C进行充放电,材料比容量可达126mAh/g,循环50次后,比容量仅下降10%,循环稳定性好。  相似文献   

18.
为了改善Ni(OH)2的电化学性质,提高锌镍电池的充放电性能,用化学共沉淀法合成了混合铝镍氢氧化物Ni/Al(OH)x.用XRD和FTIR表征了Ni/Al(OH)x样品的晶体结构及IR光谱特征;测试了用Ni/Al(OH)x为正极活性物质的Zn/Ni实验电池的充放电性能.研究结果表明:所合成的Ni/Al(OH)x具有α-Ni(OH)2的晶体结构;Ni/Al(OH)x活性物质在充放电过程中主要为γ/α循环,以Ni/Al(OH)x作为正极活性物质的Zn/Ni试验电池具有优良的循环性能,其最高放电比容量为379mA·h/g.  相似文献   

19.
随着移动通讯设备和电动汽车的发展,对高比能量密度锂离子电池的需求越来越大。目前商业化动力电池主要采用的磷酸铁锂和三元正极材料放电比容量均低于180 mAh/g,难以满足一次充电行驶500公里以上的要求,因此,正极材料的比容量已成为限制锂离子电池能量密度提高的瓶颈。富锂材料具有大的比容量(≥250 mAh/g)和高的放电电压(3.8 V),理论能量密度高达900 Wh/kg,是未来动力电池的理想正极材料,因而研究高比容量富锂正极材料具有非常重要的现实意义。本文回顾了锂离子电池正极材料的发展和目前商业化正极材料比容量低的现状,综述了新一代大比容量富锂正极材料的结构特征和电化学性质,以及放电机制和改性研究的最新进展,并指出现阶段高能量密度锂离子电池用富锂材料遇到的问题,且有针对性地提出了解决思路和方法。  相似文献   

20.
由于其高容量、快速锂离子扩散速率和高电导性的优点,锗被认为是一种非常有前景的锂离子电池负极材料.本研究利用GeO2和石墨作为前驱体,通过水热法制备Ge/GeO_2/多层石墨复合物并将其应用于锂离子电池负极材料进行电化学性能研究.实验结果表明,Ge/GeO2纳米粒子的粒径约为40 nm.该复合物电极的第一次充放电容量分别是2045和1146 mA h g.1,库仑效率为56.0%.50圈充放电循环后,当电压范围为0.01~1.50 V时,容量保持在1008 mAhg~(-1).倍率实验表明,该电极在1C(1C=1000mAg~(-1))和2 C倍率大电流下,虽然容量略有衰减,但仍保持790和710 mAhg~(-1)的高容量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号