首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Nearly monodispersed particles of silica were prepared and coated with uniform layers of titanium dioxide in anatase phase by hydrolysis and condensation of titanium butoxide. The coating thickness could be altered by adjusting the concentration of reactants (titanium butoxide and water) and the amount of added silica particles. Different coating thicknesses were deposited and studied using optical absorption spectroscopy, electron microscopy and Fourier transform infra-red spectroscopy. It was found that silica particles of size 170 ±5 nm were coated with 23±5 nm thick layer of titanium dioxide. Alternatively titania particles of size 340±5 nm were synthesized by controlled hydrolysis of titanium ethoxide in the presence of sodium chloride. These particles were further coated with 135±5 nm thick layer of silica to investigate changes in properties after changing the shell material  相似文献   

2.
The reactivity of the relatively inert surfaces of iron-oxide magnetic nanoparticles can be significantly improved by coating the surfaces with silica. Unfortunately, however, this nonmagnetic silica layer tends to dilute the magnetic properties of the nanoparticles. Therefore, the silica layer should be as continuous, homogeneous, and as thin as possible.In this investigation we coated superparamagnetic maghemite nanoparticles by hydrolysis and the polycondensation of tetraethyl orthosilicate (TEOS), with the ethanol solution of TEOS being added to a stable suspension of citric acid-coated nanoparticles. The influences of the various parameters of the procedure on the quality of the coatings were systematically evaluated. The quality of the silica layer was characterized using electron microscopy and by performing leaching of the nanoparticles in HCl, while the surface reactivity was tested by grafting (3-aminopropyl) triethoxysilane (APS) onto the nanoparticles. We observed that the surface concentration of the grafted APS strongly increased when the nanoparticles were coated with a silica layer. The choice of experimental conditions for the coating procedure that favors the heterogeneous nucleation of silica on the surfaces of the nanoparticles enabled the preparation of very thin silica layers, less than 2 nm thick. By decreasing the amount of added TEOS to correspond to a monolayer of -Si-OH at the nanoparticles' surfaces, their surface reactivity could be very much improved, and with a reduction in their magnetization of only ∼10%.  相似文献   

3.
In this paper, we report the synthesis of silica coated ZnO nanoparticles by ultrasound irradiation of a mixture of dispersion of ZnO, tetraethoxysilane (TEOS), and ammonia in an ethanol-water solution medium. The silica coating layer formed at the initial TEOS/ZnO loading of 0.8 for 60 min ultrasonic irradiation was uniform and extended up to 3 nm from the ZnO surface as revealed from HR-TEM images. Silica coated ZnO nanoparticles demonstrated a significant inhibition of photocatalytic activity against photodegradation of methylene blue dye in aqueous solution. The effects of silica coating on the UV blocking property of ZnO nanoparticles were also studied.  相似文献   

4.
Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed.  相似文献   

5.
Photocatalytic experiments were conducted using the silica coated titania nanoparticles with tunable coatings to photocatalytically degrade methyl orange in water solutions. When the silica loading on titania nanoparticles was 4.67 wt%, the silica coating layer was incomplete and the photocatalytic activity of coated nanoparticles was higher than titania nanoparticles. However, when the silica loading on titania nanoparticles increased to 9.33 wt%, the thickness of silica coatings was 1.5 nm and the photocatalytic activity of coated nanoparticles sharply decreased. When the silica loading on titania nanoparticles increased to 25.19 wt%, the coated nanoparticles still exhibited a certain photacatalytic activity due to the porosity of silica coatings. The change of the effective tiania surface area available for methyl orange caused by silica coatings and the dispersion stability were used to explain the difference in photocatalytic activity.  相似文献   

6.
This article presents a process for surface coating and functionalization of luminescent silicon nanoparticles. The particles were coated with silica using a microemulsion process that was adapted to the fragile silicon nanoparticles. The as-produced core–shell particles have a mean diameter of 35 nm and exhibit the intrinsic photoluminescence of the silicon core. The silica layer protects the core from aqueous oxidation for several days, thus allowing the use of the nanoparticles for biological applications. The nanoparticles were further coated with amines and functionalized with polyethylene glycol chains and the toxicity of the particles has been evaluated at the different stages of the process. The core–shell nanoparticles exhibit no acute toxicity towards lung cells, which is promising for further development.  相似文献   

7.
Superparamagnetic iron oxide nanoparticles (SPIONs) were coated with polyethylenimine. Here, we briefly describe the synthesis as well as DNA:PEI:SPION complexes and the characterization of the compounds according to their particle size, ζ-potential, morphology, DNA complexing ability, magnetic sedimentation, and colloidal stability. PEI coating of SPIONs led to colloidally stable beads even in high salt concentrations over a wide pH range. DNA plasmids and PCR products encoding for green fluorescent protein were associated with the described beads. The complexes were added to cells and exposed to permanent and pulsating magnetic fields. Presence of these magnetic fields significantly increased the transfection efficiency.  相似文献   

8.
Photocatalytic experiments were conducted using the silica coated titania nanoparticles with tunable coatings to photocatalytically degrade methyl orange in water solutions. When the silica loading on titania nanoparticles was 4.67 wt%, the silica coating layer was incomplete and the photocatalytic activity of coated nanoparticles was higher than titania nanoparticles. However, when the silica loading on titania nanoparticles increased to 9.33 wt%, the thickness of silica coatings was 1.5 nm and the photocatalytic activity of coated nanoparticles sharply decreased. When the silica loading on titania nanoparticles increased to 25.19 wt%, the coated nanoparticles still exhibited a certain photacatalytic activity due to the porosity of silica coatings. The change of the effective tiania surface area available for methyl orange caused by silica coatings and the dispersion stability were used to explain the difference in photocatalytic activity.This revised version was published online in August 2005 with a corrected issue number.  相似文献   

9.
Xu L  Fanguy JC  Soni K  Tao S 《Optics letters》2004,29(11):1191-1193
The phenomenon of evanescent-wave scattering (EWS) is used to design an optical-fiber humidity sensor. Porous solgel silica (PSGS) coated on the surface of a silica optical-fiber core scatters evanescent waves that penetrate the coating layer. Water molecules in the gas phase surrounding the optical fiber can be absorbed into the inner surface of the pores of the porous silica. The absorbed water molecules form a thin layer of liquid water on the inner surface of the porous silica and enhance the EWS. The amount of water absorbed into the PSGS coating is in dynamic equilibrium with the water-vapor pressure in the gas phase. Therefore the humidity in the air can be quantitatively determined with fiber-optic EWS caused by the PSGS coating. The humidity sensor reported here is fast in response, reversible, and has a wide dynamic range. The possible interference caused by EWS to an optical-fiber gas sensor with a reagent-doped PSGS coating as a transducer is also discussed.  相似文献   

10.
Mesoporous silica gel has been coated with a thin silicon oxynitridefilm via chemical surface coating. In the first part of the synthesis, achemically bound preceramic polysilazane coating is formed layer by layer onthe pore walls at low temperature, using SiCl4 andNH3 as reagents. In the second part of the synthesis, thepolysilazane coated silica gel is pyrolysed, yielding a chemically bound,thin oxynitride coating.During the synthesis, the evolution of the chemical and morphologicalcomposition has been investigated with several elemental and spectroscopicanalysis techniques as well as with nitrogen porosimetry.  相似文献   

11.
包膜肥料是目前肥料研究领域中的热点。相关的研究主要集中在包膜材料对包膜肥养分释放的作用机制上,而膜材在包膜前后结构变化的可用信息则较少,此信息是能否直接用膜材研究包膜肥养分控释机理的关键所在。文章分别用以聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)和聚碳酸酯(PC)为主要材料配制的膜材为对象,研究他们在对尿素包膜前后红外吸收光谱的变化,目的是为利用纯膜材深入研究包膜肥养分控释机理提供理论依据。结果显示PLA和PC在对尿素包膜前后的红外吸收光谱变化较小,而PBS较大。这说明前两种包膜材料能够直接用于研究包膜肥养分释放情况,但PBS不能。  相似文献   

12.
Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products because of the excellent UV light absorption property and low catalytic ability for the oxidation of organic materials superior to undoped ceria. In order to reduce the oxidation catalytic activity further, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique. Generally, nanoparticles of inorganic materials do not provide a good coverage for human skin because of the agglomeration of the particles. The platy particles are required to enhance the covering ability of inorganic materials. This can be accomplished by synthesis of calcia-doped ceria/mica nanocomposite with subsequent silica coating to control catalytic activity of calcia-doped ceria. Calcia-doped ceria/mica nanocomposite was prepared by soft solution chemical method followed by silica coating via seeded polymerization technique. Silica coated calcia-doped ceria/mica nanocomposite was characterized by X-ray diffraction, SEM, TEM, XPS and FT-IR.  相似文献   

13.
Jasapara J  Wielandy S 《Optics letters》2005,30(9):1018-1020
Fourier-domain optical coherence tomography is used to image the cross sections of coated optical fibers. A standard single-mode fiber with a dual coating and a hard-clad silica fiber with a single thin low-index coating are studied. The individual coating dimensions, coated and uncoated fiber diameters, and the fiber coating's concentricity are retrieved from a single measurement.  相似文献   

14.
In this paper, we present the release of naproxen from hexagonal periodic mesoporous silica SBA-15, which serves as a drug delivery system. Naproxen, the well-known nonsteroidal anti-inflammatory drug (NSAID), was loaded into the pores of SBA-15 silica modified with aminopropyl groups. The physicochemical properties of the modified sample (A-SBA-15/napro) were compared with the unmodified SBA-15 mesoporous silica loaded with the drug (SBA-15/napro). The kinetic of the naproxen release into the physiological solution was studied. The released amount of naproxen represented 90.7% from the unmodified SBA-15 in 72 h, while from the sample A-SBA-15/napro the released amount represented about 80.9%. The prepared materials were characterized by nitrogen adsorption/desorption, Small angle X-ray scattering (SAXS), Fourier-transform infrared spectroscopy (FT-IR) and the thermoanalytical methods (TG/DTA). Thin layer chromatography (TLC) was used for quantitative determination of the released naproxen.  相似文献   

15.
硅包覆上转换纳米晶制备和表征及生物特异性标记研究   总被引:1,自引:0,他引:1  
以NaYF4为代表的上转换纳米晶作为细胞及组织标记的研究越来越热。但易团聚,水溶性、生物兼容性差,没有与生物偶联官能团等缺点限制了其应用,因而表面修饰显得尤为重要。作者通过水热和共沉淀相结合方法,制备了NaYF4∶Yb3+, Er3+上转换纳米晶,并对其包覆二氧化硅壳层。SEM表征硅包覆前后分别为25和250 nm的单分散粒子,说明硅已成功地包覆于纳米晶表面。980 nm激光照射下,样品的PBS胶体溶液呈可视上转换绿光。上转换荧光光谱和寿命均表明二氧化硅壳层对其发光性质影响很小。圆二色谱说明蛋白分子通过戊二醛与纳米晶偶联前后的二级结构基本不变。基于硅片上的抗原抗体荧光免疫识别试验进一步验证了偶联蛋白分子的特异性,表明该上转换纳米晶适合于生物标记。  相似文献   

16.
以包覆在碳纳米管表面的薄层二氧化锰作为表面再包覆聚苯胺的反应性模板合成了聚苯胺和碳的复合的多壁纳米管的结构,该复合材料在水中显示出很好的分散性.该方法还可以用来合成如聚3,4-乙撑二氧噻吩、聚吡咯、二氧化硅、无定形碳等材料与碳纳米管的复合材料.  相似文献   

17.
The clinical use of the anticancer drug doxorubicin (DOX) is limited by strong side effects and phenomena of cell resistance. Drug targeting by binding DOX to nanoparticles could overcome these limitations. We recently described a method to associate DOX to superparamagnetic iron oxide nanoparticles (SPION) in view of magnetic drug targeting (Munnier et al. in Int J Pharm 363:170–176, 2008). DOX is bound to the nanoparticle surface through a pre-formed DOX–Fe2+ complex. The DOX-loaded SPION present interesting properties in terms of drug loading and biological activity in vitro. The purpose of this study is to explore the possible mechanisms of the in vitro cytotoxicity of DOX-loaded SPION. The uptake of SPION was followed qualitatively by conventional optical microscopy after Prussian blue staining and quantitatively by iron determination by atomic absorption spectroscopy. The subcellular distribution of intrinsically fluorescent DOX was followed by confocal spectral imaging (CSI) and the subsequent cytotoxicity by the MTT method. We reveal modifications of DOX intracellular interactions for SPION-delivered drug and increased cytotoxicity. These results are discussed in terms of internalization route of the drug and of a potential role of iron oxide nanoparticles in the observed cytotoxicity.  相似文献   

18.
The fabrication of condensed silica and mesoporous silica coated spinel CoFe2O4 and FeCo alloy magnetic nanocomposites are reported. The encapsulation of well-defined 5 nm thick uniform silica layer on CoFe2O4 magnetic nanoparticles was performed. The formation of mesopores in the shell was a consequence of removal of organic group of the precursor through annealing. The NiO nanoparticles were loaded into the mesoporous silica. The mesoporous silica shells leads to a larger coercivity than that of pure CoFe2O4 magnetic nanoparticles due to the decrease of interparticle interactions and magneto-elastic anisotropy. In addition, the FeCo nanoparticles were coated by condensed and mesoporous silica. The condensed silica can protect the reactive FeCo alloy from oxidation up to 300 °C. However, saturation magnetization of FeCo nanoparticles coated by silica after 400 °C annealing is dramatically decreased due to the oxidation of the FeCo core. The mesoporous silica coated magnetic nanostructure loaded with NiO as a final product could be used in the field of biomedical applications.  相似文献   

19.
The present paper describes the room temperature synthesis of dip coated water repellent silica coatings onto stainless steel substrates using 1,1,1,3,3,3-hexamethyldisilazane as a surface modifying agent. The hydrophobic property of the silica coating was enhanced by increasing its surface roughness, which was achieved by a proper control over the MeOH/TMOS molar ratio (S) during the synthesis. The contact angle of a water droplet (10 μl) increased from 72° to 145° with an increase in the S value from 9.1 to 36.4. The silica coating showed a minimum sliding angle of 15° for a water droplet of 10 μl. The water repellent silica coatings are thermally stable up to a temperature of 340 °C. The results have been discussed by taking into consideration the contact angle measurements, surface morphology and sol-gel parameters.  相似文献   

20.
The detection of superparamagnetic iron oxide nanoparticles (SPION) in synoviocytes is reported. Synoviocytes were incubated for 2, 12, 24 and 48 h with 1.5 mg/ml of PVA coated SPION under the influence of magnets (12 h). Particles were well tolerated by the synoviocytes, were easily detected using the Turnbulls and Prussian blue reactions between 12 and 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号