首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   4篇
化学   9篇
物理学   11篇
  2019年   1篇
  2017年   1篇
  2015年   6篇
  2014年   2篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
2.
Primary cell lines are more difficult to transfect when compared to immortalized/transformed cell lines, and hence new techniques are required to enhance the transfection efficiency in these cells. We isolated and established primary cultures of synoviocytes, chondrocytes, osteoblasts, melanocytes, macrophages, lung fibroblasts, and embryonic fibroblasts. These cells differed in several properties, and hence were a good representative sample of cells that would be targeted for expression and delivery of therapeutic genes in vivo. The efficiency of gene delivery in all these cells was enhanced using polyethylenimine-coated polyMAG magnetic nanoparticles, and the rates (17–84.2%) surpassed those previously achieved using other methods, especially in cells that are difficult to transfect. The application of permanent and pulsating magnetic fields significantly enhanced the transfection efficiencies in synoviocytes, chondrocytes, osteoblasts, melanocytes and lung fibroblasts, within 5 min of exposure to these magnetic fields. This is an added advantage for future in vivo applications, where rapid gene delivery is required before systemic clearance or filtration of the gene vectors occurs.  相似文献   
3.
X‐ray microscopy is a commonly used method especially in material science application, where the large penetration depth of X‐rays is necessary for three‐dimensional structural studies of thick specimens with high‐Z elements. In this paper it is shown that full‐field X‐ray microscopy at 6.2 keV can be utilized for imaging of biological specimens with high resolution. A full‐field Zernike phase‐contrast microscope based on diffractive optics is used to study lipid droplet formation in hepatoma cells. It is shown that the contrast of the images is comparable with that of electron microscopy, and even better contrast at tender X‐ray energies between 2.5 keV and 4 keV is expected.  相似文献   
4.
The directed self‐assembly of gold nanoparticles through the crystallization of surface‐grafted polyethylene oxide (PEO) in ethanol–water mixtures is described. This process is fully reversible and tunable through either the size of the core or the polymeric coating. Characterization by X‐ray scattering and electron microscopy of the self‐assembled structures reveals order at the nanoscale, typically not the case for thermoresponsive gold nanoparticles coated with lower or upper critical solution temperature polymers. A further novelty is the result of selective binding of calcium ions to the PEO in the fluid state: a reversible thermoresponsive transition become irreversible.

  相似文献   

5.
The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 °C, as in vivo. Using two orthogonal methods, a common SLP (20 W g−1) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities.  相似文献   
6.
The ability to detect and accurately characterize particles is required by many fields of nanotechnology, including materials science, nanotoxicology, and nanomedicine. Among the most relevant physicochemical properties of nanoparticles, size and the related surface-to-volume ratio are fundamental ones. Taylor dispersion combines three independent phenomena to determine particle size: optical extinction, translational diffusion, and sheer-enhanced dispersion of nanoparticles subjected to a steady laminar flow. The interplay of these defines the apparent size. Considering that particles in fact are never truly uniform nor monodisperse, we rigorously address particle polydispersity and calculate the apparent particle size measured by Taylor dispersion analysis. We conducted case studies addressing aqueous suspensions of model particles and large-scale-produced “industrial” particles of both academic and commercial interest of various core materials and sizes, ranging from 15 to 100 nm. A comparison with particle sizes determined by transmission electron microscopy confirms that our approach is model-independent, non-parametric, and of general validity that provides an accurate account of size polydispersity—independently on the shape of the size distribution and without any assumption required a priori.  相似文献   
7.
The physicochemical properties of nanoparticles (NPs) strongly rely on their colloidal stability, and any given dispersion can display remarkably different features, depending on whether it contains single particles or clusters. Thus, developing efficient experimental methods that are able to provide accurate and reproducible measures of the NP properties is a considerable challenge for both research and industrial development. By analyzing different NPs, through size and concentration, it is demonstrated that lock‐in thermography, based on light absorption and heat generation, is able to detect and differentiate the distinct aggregation and re‐dispersion behavior of plasmonic NPs, e.g., gold and silver. Most importantly, the approach is nonintrusive and potentially highly cost‐effective compared to standard analytical techniques.  相似文献   
8.
Indigo and thioindigo pigments are used for a wide range of applications. The crystal structure of the mixed compound monothioindigo [systematic name: (E)‐2‐(3‐oxo‐2,3‐dihydro‐1‐benzothiophen‐2‐ylidene)‐2,3‐dihydro‐1H‐indol‐3‐one], C16H9NO2S, has been determined by microcrystal structure analysis from a crystal with a size of just 1 × 2 × 10 µm. The crystal structure of monothioindigo resembles those of indigo and thioindigo. The molecules show orientational disorder, with site‐occupation factors of 0.962 (2) and 0.038 (2) for the major and minor disorder components, respectively. The indigo fragment donates an intermolecular hydrogen bond, leading to a criss‐cross arrangement of molecules similar to that in indigo, whereas the thioindigo fragment exhibits only van der Waals interactions and molecular stacking, similar to that in thioindigo.  相似文献   
9.
10.
Superparamagnetic iron oxide nanoparticles (SPIONs) were coated with polyethylenimine. Here, we briefly describe the synthesis as well as DNA:PEI:SPION complexes and the characterization of the compounds according to their particle size, ζ-potential, morphology, DNA complexing ability, magnetic sedimentation, and colloidal stability. PEI coating of SPIONs led to colloidally stable beads even in high salt concentrations over a wide pH range. DNA plasmids and PCR products encoding for green fluorescent protein were associated with the described beads. The complexes were added to cells and exposed to permanent and pulsating magnetic fields. Presence of these magnetic fields significantly increased the transfection efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号