首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3791篇
  免费   71篇
  国内免费   13篇
化学   2275篇
晶体学   10篇
力学   38篇
数学   666篇
物理学   886篇
  2021年   21篇
  2020年   35篇
  2019年   32篇
  2018年   27篇
  2016年   65篇
  2015年   56篇
  2014年   60篇
  2013年   110篇
  2012年   101篇
  2011年   141篇
  2010年   94篇
  2009年   78篇
  2008年   108篇
  2007年   133篇
  2006年   118篇
  2005年   90篇
  2004年   111篇
  2003年   72篇
  2002年   69篇
  2001年   43篇
  2000年   36篇
  1999年   23篇
  1998年   24篇
  1997年   48篇
  1996年   63篇
  1995年   67篇
  1994年   70篇
  1993年   54篇
  1992年   52篇
  1991年   42篇
  1990年   57篇
  1989年   44篇
  1988年   46篇
  1987年   49篇
  1986年   39篇
  1985年   84篇
  1984年   68篇
  1983年   51篇
  1982年   39篇
  1981年   69篇
  1980年   61篇
  1979年   46篇
  1978年   63篇
  1977年   64篇
  1976年   38篇
  1975年   52篇
  1974年   51篇
  1973年   28篇
  1972年   28篇
  1960年   21篇
排序方式: 共有3875条查询结果,搜索用时 15 毫秒
1.
2.
Reaction of (TBBP)AlMe ? THF with [Cp*2Zr(Me)OH] gave [(TBBP)Al(THF)?O?Zr(Me)Cp*2] (TBBP=3,3’,5,5’‐tetra‐tBu‐2,2'‐biphenolato). Reaction of [DIPPnacnacAl(Me)?O?Zr(Me)Cp2] with [PhMe2NH]+[B(C6F5)4]? gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)?O?Zr(THF)Cp2]+[B(C6F5)4]? (DIPPnacnac=HC[(Me)C=N(2,6‐iPr2?C6H3)]2). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40–47 kcal mol?1) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six‐membered‐ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal‐Me‐C angle that prevents synchronized bond‐breaking and making. A more‐likely pathway is dissociation of the Al‐O‐Zr complex into an aluminate and the active polymerization catalyst [Cp*2ZrMe]+.  相似文献   
3.
4.
A readily activated iron alkyl precatalyst effectively catalyzes the highly enantioselective hydroboration of N-alkyl imines. Employing a chiral bis(oxazolinylmethylidene)isoindoline pincer ligand, the asymmetric reduction of various acyclic N-alkyl imines provided the corresponding α-chiral amines in excellent yields and with up to >99 % ee. The applicability of this base metal catalytic system was further demonstrated with the synthesis of the pharmaceuticals Fendiline and Tecalcet.  相似文献   
5.
Metal–organic frameworks (MOFs) are a promising class of materials for many applications, due to their high chemical tunability and superb porosity. By growing MOFs as (thin-)films, additional properties and potential applications become available. Here, copper (II) 1,3,5-benzenetricarboxylate (Cu-BTC) metal–organic framework (MOF) thin-films are reported, which were synthesized by spin-coating, resulting in “nanowebs”, that is, fiber-like structures. These surface-mounted MOFs (SURMOFs) were studied by using photoinduced force microscopy (PiFM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The optimal concentration of precursors (10 mm ) was determined that resulted in chemically homogeneous, pure nanowebs. Furthermore, the morphology and (un)coordinated Cu sites in the web were tuned by varying the rotation speed of the spin-coating process. X-ray diffraction (XRD) analysis showed that rotation speeds ≥2000 rpm (with precursors in a water/ethanol solution) generate the catena-triaqua-μ-(1,3,5-benzenetricarboxylate)-copper(II), or Cu(BTC)(H2O)3 coordination polymer. X-ray photoelectron spectroscopy (XPS) highlighted the strong decrease in number of (defective) Cu+ sites, as the nanowebs mainly consist of coordinated Cu2+ Lewis acid sites (LAS) and organic linker–linker, for example, hydrogen-bonding, interactions. Finally, the Lewis-acidic character of the Cu sites is illustrated by testing the films as catalysts in the isomerization of α-pinene oxide. The higher number of LAS (≥3000 rpm), result in higher campholenic aldehyde selectivity reaching up to 87.7 %. Furthermore, the strength of a combined micro- and spectroscopic approach in understanding the nature of MOF thin-films in a spatially resolved manner is highlighted.  相似文献   
6.
In the quest for new antibiotics, two novel engineered cationic antimicrobial peptides (eCAPs) have been rationally designed. WLBU2 and D8 (all 8 valines are the d -enantiomer) efficiently kill both Gram-negative and -positive bacteria, but WLBU2 is toxic and D8 nontoxic to eukaryotic cells. We explore protein secondary structure, location of peptides in six lipid model membranes, changes in membrane structure and pore evidence. We suggest that protein secondary structure is not a critical determinant of bactericidal activity, but that membrane thinning and dual location of WLBU2 and D8 in the membrane headgroup and hydrocarbon region may be important. While neither peptide thins the Gram-negative lipopolysaccharide outer membrane model, both locate deep into its hydrocarbon region where they are primed for self-promoted uptake into the periplasm. The partially α-helical secondary structure of WLBU2 in a red blood cell (RBC) membrane model containing 50 % cholesterol, could play a role in destabilizing this RBC membrane model causing pore formation that is not observed with the D8 random coil, which correlates with RBC hemolysis caused by WLBU2 but not by D8.  相似文献   
7.
Hydrogenases are H2 converting enzymes that harbor catalytic cofactors in which iron (Fe) ions are coordinated by biologically unusual carbon monoxide (CO) and cyanide (CN) ligands. Extrinsic CO and CN, however, inhibit hydrogenases. The mechanism by which CN binds to [FeFe]-hydrogenases is not known. Here, we obtained crystal structures of the CN-treated [FeFe]-hydrogenase CpI from Clostridium pasteurianum. The high resolution of 1.39 Å allowed us to distinguish intrinsic CN and CO ligands and to show that extrinsic CN binds to the open coordination site of the cofactor where CO is known to bind. In contrast to other inhibitors, CN treated crystals show conformational changes of conserved residues within the proton transfer pathway which could allow a direct proton transfer between E279 and S319. This configuration has been proposed to be vital for efficient proton transfer, but has never been observed structurally.  相似文献   
8.
Four new donor–acceptor triads (D–A–D) based on discotic and arylene mesogens have been synthesized by using Sonogashira coupling and cyclization reactions. This family of triads consists of two side‐on pending triphenylene mesogens, acting as the electron‐donating groups (D), laterally connected through short lipophilic spacers to a central perylenediimide (PI), benzo[ghi]perylenediimide (BI), or coronenediimide (CI) molecular unit, respectively, playing the role of the electron acceptor (A). All D–A–D triads self‐organize to form a lamello‐columnar oblique mesophase, with a highly segregated donor–acceptor (D–A) heterojunction organization, consequent to efficient molecular self‐sorting. The structure consists in the regular alternation of two disrupted rows of triphenylene columns and a continuous row of diimine species. High‐resolution STM images demonstrate that PI‐TP2 forms stable 2D self‐assembly nanostructures with some various degrees of regularity, whereas the other triads do not self‐organize into ordered architectures. The electron‐transport mobility of CI‐TP2, measured by time‐of‐flight at 200 °C in the mesophase, is one order of magnitude higher than the hole mobility. By means of this specific molecular designing idea, we realized and demonstrated for the first time the so‐called p–n heterojunction at the molecular level in which the electron‐rich triphenylene columns act as the hole transient pathways, and the coronenediimide stacks form the electron‐transport channels.  相似文献   
9.
2,5‐Diferrocenyl‐1‐Ar‐1H‐phospholes 3 a – e (Ar=phenyl ( a ), ferrocenyl ( b ), mesityl ( c ), 2,4,6‐triphenylphenyl ( d ), and 2,4,6‐tri‐tert‐butylphenyl ( e )) have been prepared by reactions of ArPH2 ( 1 a – e ) with 1,4‐diferrocenyl butadiyne. Compounds 3 b – e have been structurally characterized by single‐crystal XRD analysis. Application of the sterically demanding 2,4,6‐tri‐tert‐butylphenyl group led to an increased flattening of the pyramidal phosphorus environment. The ferrocenyl units could be oxidized separately, with redox separations of 265 ( 3 b ), 295 ( 3 c ), 340 ( 3 d ), and 315 mV ( 3 e ) in [NnBu4][B(C6F5)4]; these values indicate substantial thermodynamic stability of the mixed‐valence radical cations. Monocationic [ 3 b ]+–[ 3 e ]+ show intervalence charge‐transfer absorptions between 4650 and 5050 cm?1 of moderate intensity and half‐height bandwidth. Compounds 3 c – e with bulky, electron‐rich substituents reveal a significant increase in electronic interactions compared with less demanding groups in 3 a and 3 b .  相似文献   
10.
Silicon analogues of the most prominent carbon nanostructures, namely, hollow spheroidals such as C60 and the fullerene family, have been unknown to date. Herein we show that discrete Si20 dodecahedra, stabilized by an endohedral guest and valence saturation, are accessible in preparative yields through a chloride‐induced disproportionation reaction of hexachlorodisilane in the presence of tri(n‐butyl)amine. X‐ray crystallography revealed that each silicon dodecahedron contains an endohedral chloride ion that imparts a net negative charge. Eight chloro substituents and twelve trichlorosilyl groups are attached to the surface of each cluster in a strictly regioregular arrangement, a thermodynamically preferred substitution pattern according to quantum‐chemical assessment. Our results demonstrate that the wet‐chemical self‐assembly of a complex, monodisperse Si nanostructure is possible under mild conditions starting from simple Si2 building blocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号