首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
多孔硅橡胶有限变形的粘弹性行为   总被引:3,自引:0,他引:3  
针对孔隙度较大(孔隙度大于50%)的硅橡胶材料在有限变形时的粘弹性行为,从建立描述材料粘弹性特征的松驰函数和变形特征的应变能函数出发,提出了适合多孔隙、可压硅橡胶材料的非线性粘弹性力学行为的本构关系,松驰函数和应变能函数可解耦为等容和体积变形两部分,并引入了拟时间的概念来反映变形对材料特征时间的影响,利用硅橡胶材料的单轴压缩松驰实验与材料模型进行了对比,讨论了多孔硅橡胶的等容变形和体积变形对应力松驰的影响。  相似文献   

2.
A linear isothermal dynamic model for a porous medium saturated by a Newtonian fluid is developed in the paper. In contrast to the mixture theory, the assumption of phase separation is avoided by introducing a single constitutive energy function for the porous medium. An important advantage of the proposed model is it can account for the couplings between the solid skeleton and the pore fluid. The mass and momentum balance equations are obtained according to the generalized mixture theory. Constitutive relations for the stress, the pore pressure are derived from the total free energy accounting for inter-phase interaction. In order to describe the momentum interaction between the fluid and the solid, a frequency independent Biot-type drag force model is introduced. A temporal variable porosity model with relaxation accounting for additional attenuation is introduced for the first time. The details of parameter estimation are discussed in the paper. It is demonstrated that all the material parameters in our model can be estimated from directly measurable phenomenological parameters. In terms of the equations of motion in the frequency domain, the wave velocities and the attenuations for the two P waves and one S wave are calculated. The influences of the porosity relaxation coefficient on the velocities and attenuation coefficients of the three waves of the porous medium are discussed in a numerical example.  相似文献   

3.
Porous rubber materials are often used in automotive industries. In this paper, a carbon black-filled one is investigated, which is used, for example, as sealing. Such materials are distinguished by viscoelastic behaviour and by a structural compressibility induced by the porous structure. To identify the material behaviour, uniaxial tension tests and hydrostatic compression tests are performed. Therein the main focus of attention lies on the basic elasticity and on the viscoelasticity in the whole loading range. An important observation of these tests is the viscoelastic behaviour under hydrostatic compression, which has to be included in the material model. Because of the two-phase character of cellular rubber, the theory of porous media is taken into account. To model the structural compressibility, a volumetric–isochore split of the deformation gradient is used. Therein the volumetric part includes the aspect of the point of compaction. Finally, the concept of finite viscoelasticity is applied introducing an intermediate configuration. Because of the viscoelastic behaviour under hydrostatic compression, the volumetric–isochore split is taken into account for the nonequilibrium parts, too. Nonlinear relaxation functions are used to model the process-dependent relaxation times and the highly nonlinear behaviour with respect to the deformation and feedrate. The material parameters of the model are estimated using a stochastic identification algorithm.  相似文献   

4.
A physically sound three-dimensional anisotropic formulation of the standard linear viscoelastic solid with integer or fractional order rate laws for a finite set of the pertinent internal variables is presented. It is shown that the internal variables can be expressed in terms of the strain as convolution integrals with kernels of Mittag–Leffler function type. A time integration scheme, based on the Generalized Midpoint rule together with the Grünwald algorithm for numerical fractional differentiation, for integration of the constitutive response is developed. The predictive capability of the viscoelastic model for describing creep, relaxation and damped dynamic responses is investigated both analytically and numerically. The algorithm and the present general linear viscoelastic model are implemented into the general purpose finite element code Abaqus. The algorithm is then used together with an explicit difference scheme for integration of structural responses. In numerical examples, the quasi-static and damped responses of a viscoelastic ballast material that is subjected to loads simulating the overrolling of a train are investigated.  相似文献   

5.
6.
The objective of this work is to develop an analytical homogenization method to estimate the effective mechanical properties of fluid-filled porous media with periodic microstructure. The method is based on the equivalent inclusion concept of homogenization applied earlier for solid–solid mixture. It is assumed that porous media are described by the poroelastic constitutive law developed by Biot where porosity is a material parameter. By solving the governing equations of poroelasticity in Fourier transformed domain, the relation between periodic strain and eigenstrain in porous media is established. This relation is subsequently used in an average consistency condition involving both solid and fluid phase stresses and strains. The geometry of the porous microstructure is captured in the g-integral. This homogenization method can also be applied to estimate the equivalent properties of solid–fluid mixture where a pure solid and fluid can be modeled by assuming very low and high porosity, respectively. Several examples are considered to establish this new method by comparing with other existing analytical and numerical methods of homogenization. As an application, poroelastic properties of cortical bone fibril are estimated and compared with previously computed values.  相似文献   

7.
The weakly forced vibration of an axially moving viscoelastic beam is investigated.The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved.The nonlinear equations governing the transverse vibration are derived from the dynamical,constitutive,and geometrical relations.The method of multiple scales is used to determine the steady-state response.The modulation equation is derived from the solvability condition of eliminating secular terms.Closed-form expressions of the amplitude and existence condition of nontrivial steady-state response are derived from the modulation equation.The stability of nontrivial steady-state response is examined via the Routh-Hurwitz criterion.  相似文献   

8.
Open cell materials with cubic anisotropy and structures made thereof are investigated with respect to their linear viscoelastic properties, in particular their relaxation behavior. The study is concerned with the prediction of the effective behavior which results from the isotropic bulk material properties as well as the cellular architecture. Finite Element Method simulations of three-dimensional structures are employed to predict the effective response to a wide range of loading modes in the time domain.For predicting the properties of the cellular materials and structures by the Finite Element Method different modeling strategies are employed. The first approach is a periodic unit cell method modeling an infinite medium by means of periodic boundary conditions. This way the entire effective linear viscoelastic constitutive behavior can be computed. However, it is not possible to capture effects as being attributed to traction free faces and load introduction in specimens or structures. A second approach follows to account for these effects by generating finite sample models to represent situations which occur in experimental testing. Finally, an analytical constitutive material law is developed to model linear viscoelasticity for cubic anisotropy in the time domain. It is implemented into the commercial Finite Element software ABAQUS/Standard and the material parameters are gained from the unit cell investigations. This enables the simulation of structures, parts, and components which consist or contain such cellular materials.  相似文献   

9.
The pressure-sensitive plastic response of a material has been studied in terms of the intrinsic sensitivity of its yield stress to pressure and the presence and growth of cavities. This work focuses on the interplay between these two distinctly different mechanisms and the attendant material behavior. To this end, a constitutive model is proposed taking both mechanisms into account. Using Gurson's homogenization, an upper bound model is developed for a voided solid with a plastically dilatant matrix material. This model is built around a three-parameter axisymmetric velocity field for a unit sphere containing a spherical void. The void is also subjected to internal pressure; this can be relevant for polymeric adhesives permeated by moisture that vaporizes at elevated temperatures. The plastic response of the matrix material is described by Drucker–Prager's yield criterion and an associated flow rule. The resulting yield surface and porosity evolution law of the homogenized constitutive model are presented in parametric form. Using the solutions to special cases as building blocks, approximate models with explicit forms are proposed. The parametric form and an approximate explicit form are compared against full-field solutions obtained from finite element analysis. They are also studied for loading under generalized tension conditions. These computational simulations shed light on the interplay between the two mechanisms and its enhanced effect on yield strength and plastic flow. Among other things, the tensile yield strength of the porous solid is greatly reduced by the internal void pressure, particularly when a liquid/vapor phase is the source of the internal pressure.  相似文献   

10.
The response of a polymer (polytetrafluoroethylene) to quasi-static and dynamic loading is determined and modeled. The polytetrafluoroethylene is extremely ductile and highly nonlinear in elastic as well as plastic behaviors including elastic unloading. Constitutive model developed earlier by Khan, Huang and Liang (KHL) is extended to include the responses of polymeric materials. The strain rate hardening, creep, and relaxation behaviors of polytetrafluoroethylene were determined through extensive experimental study. Based on the observation that both viscoelastic and viscoplastic deformation of polytetrafluoroethylene are time dependent and nonlinear, a phenomenalogical viscoelasto–plastic constitutive model is presented by a series connection of a viscoelastic deformation module (represented by three elements standard solid spring dashpot model), and a viscoplastic deformation module represented by KHL model. The KHL module is affected only when the stress exceeds the initial yield stress. The comparison between the predictions from the extended model and experimental data for uniaxial static and dynamic compression, creep and relaxation demonstrate that the proposed constitutive model is able to represent the observed time dependent mechanical behavior of polytetrafluoroethylene polytetrafluoroethylene qualitatively and quantitatively.  相似文献   

11.
For modeling the constitutive properties of viscoelastic solids in the context of small deformations, the so-called three-parameter solid is often used. The differential equation governing the model response may be derived in a thermodynamically consistent way considering linear spring-dashpot elements. The main problem in generalizing constitutive models from small to finite deformations is to extend the theory in a thermodynamically consistent way, so that the second law of thermodynamics remains satisfied in every admissible process. This paper concerns with the formulation and constitutive equations of finite strain viscoelastic material using multiplicative decomposition in a thermodynamically consistent manner. Based on the proposed constitutive equations, a finite element (FE) procedure is developed and implemented in an FE code. Subsequently, the code is used to predict the response of elastomer bushings. The finite element analysis predicts displacements and rotations at the relaxed state reasonably well. The response to coupled radial and torsional deformations is also simulated.  相似文献   

12.
A two-scale theory for the swelling biopolymeric media is developed. At the microscale, the solid polymeric matrix interacts with the solvent through surface contact. The relaxation processes within the polymeric matrix are incorporated by modeling the solid phase as viscoelastic and the solvent phase as viscous at the mesoscale. We obtain novel equations for the total stress tensor, chemical potential of the solid phase, heat flux and the generalized Darcy's law all at the mesoscale. The constitutive relations are more general than those previously developed for the swelling colloids. The generalized Darcy's law could be used for modeling non-Fickian fluid transport over a wide range of liquid contents. The form of the generalized Fick's law is similar to that obtained in earlier works involving colloids. Using two-variable expansions, thermal gradients are coupled with the strain rate tensor for the solid phase and the deformation rate tensor for the liquid phase. This makes the experimental determination of the material coefficients easier and less ambiguous.  相似文献   

13.
Under the 3:1 internal resonance condition,the steady-state periodic response of the forced vibration of a traveling viscoelastic beam is studied.The viscoelastic behaviors of the traveling beam are described by the standard linear solid model,and the material time derivative is adopted in the viscoelastic constitutive relation.The direct multi-scale method is used to derive the relationships between the excitation frequency and the response amplitudes.For the first time,the real modal functions are employed to analytically investigate the periodic response of the axially traveling beam.The undetermined coefficient method is used to approximately establish the real modal functions.The approximate analytical results are confirmed by the Galerkin truncation.Numerical examples are presented to highlight the effects of the viscoelastic behaviors on the steady-state periodic responses.To illustrate the effect of the internal resonance,the energy transfer between the internal resonance modes and the saturation-like phenomena in the steady-state responses is presented.  相似文献   

14.
In order to determine the effect of finite deformations on the stability and non-linear time-deflection behaviour of linearly viscoelastic uniaxially stressed structures, a series of simple rigid-bar-spring dashpot models were analysed ‘exactly’. The material representation was also kept as simple as possible using the standard three-element solid model.Results obtained indicate that the relaxation behaviour of such a structure depends only on its material properties. The creep response is influenced not only by the load level but most significantly by the instantaneous non-linear elastic characteristics of the structure. For structures exhibiting instantaneous elastic local instability a ‘critical time’ may be defined beyond which equilibrium is impossible. The definition for ‘safe-load-limit’ or viscoelastic critical force usually used in linear stability analyses of viscoelastic columns is generalized.  相似文献   

15.
根据多孔硅泡沫材料的单轴压缩和应力松弛实验,利用最小二乘法的LM法拟合得到硅泡沫材料的本构关系.基于上述模型开展了组合结构中多孔泡沫薄片应力松弛行为的数值模拟,得到了短时松弛过程中硅泡沫结构件的应力变化规律.  相似文献   

16.
17.
Flexible insect wings deform passively under the periodic loading during napping flight. The wing flexibility is considered as one of the specific mechanisms on improving insect flight performance. The constitutive relation of the insect wing material plays a key role on the wing deformation, but has not been clearly understood yet. A viscoelastic constitutive relation model was established based on the stress relaxation experiment of a dragonfly wing (in vitro). This model was examined by the finite element analysis of the dynamic deformation response for a model insect wing under the action of the periodical inertial force in flapping. It is revealed that the viscoelastic constitutive relation is rational to characterize the biomaterial property of insect wings in contrast to the elastic one. The amplitude and form of the passive viscoelastic deformation of the wing is evidently dependent on the viscous parameters in the constitutive relation.  相似文献   

18.
This paper deals with the investigations of a porous carbon black-filled rubber, tested with regard to its pressure and tension behaviour. In the tension range only uniaxial tests are performed while in the pressure range uniaxial as well as hydrostatic tests are performed. The uniaxial experiments are carried out in a custom-made uniaxial device and the hydrostatic tests in a pressure chamber which is specially developed for this application. The construction and use of the pressure chamber is clearly described in this paper. All experiments are related to the basic elasticity of the material. The viscoelastic behaviour is completely disregarded at this point. Not only the experiments are discussed, also the modelling of the material is looked at. The tested cellular rubber is composed of an incompressible solid phase and a compressible gas phase. For that reason a so-called structural compressibility is observed. The compressible behaviour of cellular rubber is an important property. So the main focus of the paper is on the pressure tests and the simulation of these. The existing material models for rubber like materials only deal with incompressible rubber structures. To represent the compressible behaviour, the Theory of Porous Media is used. The constitutive model is based on a polynomial approach for an incompressible material. This is complemented by a volumetric expansion term with a point of compaction to model the structural compressibility.  相似文献   

19.
Huyghe  J.  Janssen  J.D. 《Transport in Porous Media》1999,34(1-3):129-141
A thermo-chemo-electro-mechanical formulation of quasi-static finite deformation of swelling incompressible porous media is derived from a mixture theory including the volume fraction concept. The model consists of an electrically charged porous solid saturated with an ionic solution. Incompressible deformation is assumed. The mixture as a whole is assumed locally electroneutral. Different constituents following different kinematic paths are defined: solid, fluid, anions, cations and neutral solutes. Balance laws are derived for each constituent and for the mixture as a whole. A Lagrangian form of the second law of thermodynamics for incompressible porous media is used to derive the constitutive restrictions of the medium. The material properties are shown to be contained in one strain energy function and a matrix of frictional tensors. A principle of reversibility results from the constitutive restrictions. Existing theories of swelling media should be evaluated with respect to this principle.  相似文献   

20.
Mohamed A. Attia 《Meccanica》2017,52(10):2391-2420
This study investigates the size-dependent quasistatic response of a nonlinear viscoelastic microelectromechanical system (MEMS) under an electric actuation. To have this problem in view, the deformable electrode of the MEMS is modelled using cantilever and doubly-clamped viscoelastic microbeams. The modified couple stress theory in conjunction with Bernoulli–Euler beam theory are used for mathematical modeling of the size-dependent instability of microsystems in the framework of linear viscoelastic theory. Simultaneous effect of electrostatic actuation including fringing field, residual stress, mid-plane stretching and Casimir and van der Waals intermolecular forces are considered in the theoretical model. A single element of the standard linear solid element is used to simulate the viscoelastic behavior. Based on the extended Hamilton’s variational principle, the nonlinear governing integro-differential equation and boundary conditions are derived. Thereafter, a new generalized differential-integral quadrature solution for the nonlinear quasistatic response of electrically actuated viscoelastic micro/nanobeams under two different boundary conditions; doubly-clamped microbridge and clamped-free microcantilever. The developed model is verified and a good agreement is obtained. Finally, a comprehensive study is conducted to investigate the effects of various parameters such as material relaxation time, durable modulus, material length scale parameter, Casimir force, van der Waals force, initial gap and beam length on the pull-in response of viscoelastic microbridges and microcantilevers in the framework of viscoelasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号