首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The mechanical properties of open cell structures made from an elastic–plastic bulk material are investigated by Finite Element simulations. The influence of structural irregularities on elasto-plasticity and deformation localization of open cell structures is analyzed. Six regular three-dimensional generic structures with a relative density of 12.5% are modeled by a unit cell approach for predicting the entire tensors of elasticity. From these six structures the two structures with the lowest and the highest elastic anisotropy are selected for further studies, introducing various degrees of structural irregularities. The effect of these irregularities on the linear and nonlinear behavior as well as the influence on the deformation localization is studied employing finite sample models. Results are presented by means of the direction dependent Young’s moduli, deformation plots, overall stress–strain curves, and histograms of the energy distribution.  相似文献   

2.
基于拓展多尺度有限元的点阵材料结构最小柔顺性设计   总被引:1,自引:0,他引:1  
本文应用拓展的多尺度有限元法(Extended Multiscale Finite Element Method),以微观构件的截面积为设计变量,研究了体积约束下点阵材料构成结构的最小柔顺性设计问题。建立了适应具有复杂几何形状和载荷边界的点阵材料结构的优化模型,应用序列二次规划算法对悬臂梁和L形梁算例在线性边界条件和周期性边界条件下进行了优化设计,讨论了点阵材料微结构尺寸效应对优化结果的影响,验证了优化模型和求解算法的可靠性,为点阵材料应用于复杂实际工程结构的优化设计提供了新的技术手段。  相似文献   

3.
Two-dimensional cellular materials (prismatic honeycombs) provide a range of properties that make them suitable for multifunctional applications involving heat dissipation and structural performance. In this paper we present two-scale homogenization-based finite element scheme for convective heat transfer and structural characterization of 2-D cellular metals with uniform and graded cell sizes of various topologies as well as with mixed cell-topologies. For convective heat transfer analysis, the cells are modeled implicitly as temperature-dependent sinks modeling the out-of-plane fluid convection through the cells; the sink strength is determined via a micromechanics problem of heat transfer in a cell. For structural analysis, the cellular material is represented as a micropolar continuum with linear elastic constitutive equations obtained via micromechanics solution of a representative unit cell. The analyses are then used in conjunction with an optimization algorithm to design cellular materials with functionally tailored mesostructures. The analysis and design framework enables tailoring cellular materials with graded cell structures of a given topology as well as with cell structures that combine multiple topologies.  相似文献   

4.
An Element Free Galerkin (EFG) method based formulation for steady dynamic crack growth in elastic–plastic materials is developed. A domain convecting parallel to the steadily moving crack tip is employed. The EFG methodology eliminates the stringent mesh requirements of the Finite Element Method (FEM) for such problems. Both rate-independent materials and rate-dependent materials are considered. The material is characterized by von Mises yielding condition and an associated flow rule. For rate-independent materials, both the influence of crack speeds and that of strain hardening on the mechanics of steady dynamic crack growth are investigated. For rate-dependent materials, only a non-hardening material is considered with emphasis on determining the influence of viscous properties of materials and crack speeds. The influence of strain hardening on steady dynamic crack growth shows the same trends as for steady quasi-static crack growth. The simplifications used in the literature in deriving analytical solutions for high strain-rate crack growth have been examined thoroughly using the numerical results.  相似文献   

5.
The paper deals with the problem of the determination of the in-plane behavior of periodic masonry material. The macromechanical equivalent Cosserat medium, which naturally accounts for the absolute size of the constituents, is derived by a rational homogenization procedure based on the Transformation Field Analysis. The micromechanical analysis is developed considering a Cauchy model for masonry components. In particular, a linear elastic constitutive relationship is considered for the blocks, while a nonlinear constitutive law is adopted for the mortar joints, accounting for the damage and friction phenomena occurring during the loading history. Some numerical applications are performed on a Representative Volume Element characterized by a selected commonly used texture, without performing at this stage structural analyses. A comparison between the results obtained adopting the proposed procedure and a nonlinear micromechanical Finite Element Analysis is presented. Moreover, the substantial differences in the nonlinear behavior of the homogenized Cosserat material model with respect to the classical Cauchy one, are illustrated.  相似文献   

6.
It is well known that the presence of continuous fibres in SiC/Ti composites leads to a high mechanical anisotropy of the composite between the longitudinal and the two transverse directions. But it is also possible that the crystallographic texture of the matrix may lead to a non-negligible anisotropy of the mechanical properties of the composite. The crystallographic orientation of the matrix grains was determined using the Electron BackScattering Diffraction technique. A local texture of the matrix of the composite is thus evidenced. Finite Element calculations are used to determine the stress field in the matrix resulting from an applied transverse loading. The representative mechanical quantities thus determined are discussed in relation with the fundamental mechanisms of plastic deformation of the matrix. Finally, the crystallographic texture of the matrix of the composite is taken into account in the numerical modellings using a three-scale model that combines crystal plasticity, a polycrystalline aggregate model and a periodic homogenization through a Finite Element unit cell for the composite analysis.  相似文献   

7.
We present a systematic investigation of several discretization approaches for transient elastodynamic wave propagation problems. This comparison includes a Finite Difference, a Finite Volume, a Finite Element, a Spectral Element and the Scaled Boundary Finite Element Method. Numerical examples are given for simple geometries with normalized parameters, for heterogeneous materials as well as for structures with arbitrarily shaped material interfaces. General conclusions regarding the accuracy of the methods are presented. Based on the essential numerical examples an expansion of the results to a wide range of problems and thus to numerous fields of application is possible.  相似文献   

8.
A mean field mechanical model describing the inelastic behavior and strong anisotropy of Directionally Solidified (DS) materials is developed. Its material parameters are calibrated by comparison with the Finite Element (FE) computation of a Representative Volume Element (RVE). In the case of a large grain alloy where microstructure size cannot be neglected with respect to geometrical variations, this approach is a good candidate to evaluate the local scatter coming from the material heterogeneity.  相似文献   

9.
任九生  程昌钧 《力学季刊》2004,25(3):349-354
研究了在轴向载荷和周期性横向载荷共同作用下非线性粘弹性嵌岩桩的混沌运动情况。假定桩和土体分别满足Leaderman非线性粘弹性和线性粘弹性本构关系,得到的运动方程为非线性偏微分.积分方程;利用Galerkin方法将方程简化为非线性常微分一积分方程,同时利用非线性动力系统中的数值方法,进行了数值计算,得到了不同载荷参数、几何参数、材料参数时粘弹性桩发生周期运动、多周期运动及混沌运动的时程曲线、相图、功率谱、Poincare截面图,同时得到了挠度-载荷、挠度-几何参数、挠度-材料参数等分叉图,考察了各种参数的影响。数值结果表明非线性粘弹性桩在一定的条件下可以通过倍周期分叉的方式进入混沌运动状态,且桩的载荷参数、几何参数、材料参数对其运动状态有较大的影响。  相似文献   

10.
An extension of a recently-developed linear thermoelastic theory for multiphase periodic materials is presented which admits inelastic behavior of the constituent phases. The extended theory is capable of accurately estimating both the effective inelastic response of a periodic multiphase composite and the local stress and strain fields in the individual phases. The model is presently limited to materials characterized by constituent phases that are continuous in one direction, but arbitrarily distributed within the repeating unit cell which characterizes the material's periodic microstructure. The model's analytical framework is based on the homogenization technique for periodic media, but the method of solution for the local displacement and stress fields borrows concepts previously employed by the authors in constructing the higher-order theory for functionally graded materials, in contrast with the standard finite-element solution method typically used in conjunction with the homogenization technique. The present approach produces a closed-form macroscopic constitutive equation for a periodic multiphase material valid for both uniaxial and multiaxial loading. The model's predictive accuracy in generating both the effective inelastic stress-strain response and the local stress and inelastic strain fields is demonstrated by comparison with the results of an analytical inelastic solution for the axisymmetric and axial shear response of a unidirectional composite based on the concentric cylinder model and with finite-element results for transverse loading.  相似文献   

11.
Appropriate formulations are developed to allow for the atomistic-based continuum modeling of nano-reinforced structural adhesives on the basis of a nanoscale representative volume element that accounts for the nonlinear behavior of its constituents; namely, the reinforcing carbon nanotube, the surrounding adhesive and their interface. The newly developed representative volume element is then used with analytical and computational micromechanical modeling techniques to investigate the homogeneous dispersion of the reinforcing element into the adhesive upon both the linear and nonlinear properties. Unlike our earlier work where the focus was on developing linear micromechanical models for the effective elastic properties of nanocomposites, the present approach extends these models by describing the development of a nonlinear hybrid Monte Carlo Finite Element model that allows for the prediction of the full constitutive response of the bulk composite under large deformations. The results indicate a substantial improvement in both the Young’s modulus and tensile strength of the nano-reinforced adhesives for the range of CNT concentrations considered.  相似文献   

12.
By combining DEM (Discrete Element Method) and FEM (Finite Element Method), a model is established to simulate the breakage of twodimensional sharp-edge particles, in which the simulated particles are assumed to have no cracks. Particles can, however, crush during different stages of the numerical analysis, if stress-based breakage criteria are fulfilled inside the particles. With this model, it is possible to study the influence of particle breakage on macro- and micro-mechanical behavior of simulated angular materials. Two series of tests, with and without breakable particles, are simulated under different confining pressures based on conditions of biaxial tests. The results, presented in terms of micromechanical behavior for different confining pressures, are compared with macroparameters. The influence of particle breakage on microstructure of sharp-edge materials is discussed and the related confining pressure effects are investigated. Breakage of particles in rockfill materials are shown to reduce the anisotropy coefficients of the samples and therefore their strength and dilation behaviors.  相似文献   

13.
By combining DEM (Discrete Element Method) and FEM (Finite Element Method),a model is established to simulate the breakage of two-dimensional sharp-edge particles,in which the simulated particles are assumed to have no cracks.Particles can,however,crush during different stages of the numerical analysis,if stress-based breakage criteria are fulfilled inside the particles.With this model,it is possible to study the influence of particle breakage on macro- and micro-mechanical behavior of simulated angular materials.Two series of tests,with and without breakable particles,are simulated under different confining pressures based on conditions of biaxial tests.The results,presented in terms of micromechanical behavior for different confining pressures,are compared with macroparameters.The influence of particle breakage on microstructure of sharp-edge materials is discussed and the related confining pressure effects are investigated.Breakage of particles in rockfill materials are shown to reduce the anisotropy coefficients of the samples and therefore their strength and dilation behaviors.  相似文献   

14.
This paper compares the dynamic coupled behavior of floating structure and mooring system in time domain using two numerical methods for the mooring lines such as the linear spring method and the nonlinear FEM (Finite Element Method). In the linear spring method, hydrodynamic coefficients and forces on the floating body are calculated using BEM (Boundary Element Method) and the time domain equation is derived using convolution. The coupled solution is obtained by simply adding the pre-determined spring constants of the mooring lines into the floating body equation. In FEM, the minimum energy principle is applied to formulate the nonlinear dynamic equation of the mooring system with a discrete numerical model. The ground contact model and Morison formula for drag forces are also included in the formulation. The coupled solution is obtained by iteratively solving the floating body equation and the FEM equation of the mooring system. Two example structures such as weathervane ship and semi-submersible structure are analyzed using linear spring and nonlinear FEM methods and the difference of those two methods are presented. By analyzing the cases with or without surge-pitch or sway-roll coupling stiffness of mooring lines in the linear spring method, the effect of coupling stiffness of the mooring system is also discussed.  相似文献   

15.
Based on convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams, the equations governing quasi-static and dynamical behavior of Timoshenko beams with damage were first derived. The quasi-static behavior of the viscoelastic Timoshenko beam under step loading was analyzed and the analytical solution was obtained in the Laplace transformation domain. The deflection and damage curves at different time were obtained by using the numerical inverse transform and the influences of material parameters on the quasi-static behavior of the beam were investigated in detail.  相似文献   

16.
The numerical simulation of random cellular metals is still connected to many unsolved problems due to their stochastic structure. Therefore, a periodic model of a cellular metal is developed for fundamental studies of the mechanical behavior and is numerically investigated under uniaxial compression. The influence of differing hardening behaviors and differing boundary conditions on the characteristics of the material is investigated. Recommendations for the numerical simulation are derived. In contrast to common models, experimental samples of the same geometry are easy to manufacture and the results of the experiments show good agreement with the finite element calculations. Based on the proposed concept of a unit cell with periodic boundary conditions, it is possible to derive constitutive equations of cellular materials under complex loading conditions.  相似文献   

17.
18.
Topology optimization is used to systematically design periodic materials that are optimized for multiple properties and prescribed symmetries. In particular, mechanical stiffness and fluid transport are considered. The base cell of the periodic material serves as the design domain and the goal is to determine the optimal distribution of material phases within this domain. Effective properties of the material are computed from finite element analyses of the base cell using numerical homogenization techniques. The elasticity and fluid flow inverse homogenization design problems are formulated and existing techniques for overcoming associated numerical instabilities and difficulties are discussed. These modules are then combined and solved to maximize bulk modulus and permeability in periodic materials with cubic elastic and isotropic flow symmetries. The multiphysics problem is formulated such that the final design is dependent on the relative importance, or weights, assigned by the designer to the competing stiffness and flow terms in the objective function. This allows the designer to tailor the microstructure according to the materials’ future application, a feature clearly demonstrated by the presented results. The methodology can be extended to incorporate other material properties of interest as well as the design of composite materials.  相似文献   

19.
20.
《Comptes Rendus Mecanique》2017,345(3):208-220
In aerospace industries, on-board electronics are carried during flight, and such equipment must be qualified to withstand the loads to which they are exposed. In this fashion, the knowledge of the different dynamic aspects of excitations and the behavior of structures, components and/or acoustic enclosures are crucial to have controlled and performing space systems. Passive control techniques using viscoelastic materials (VEM) are widely applied and their effects on space systems must be studied aiming to obtain adequate operational environments. The effect of damping insertion on the dynamic behavior of a vibro-acoustic system is assessed in this work. A coupled structural–acoustic system, composed by a VEM coated aluminum panel and an acoustic box, is modeled by Finite Element Method (FEM). On the other side, tests are preformed using the KU Leuven facilities to validate the FEM model. Numerical vs. experimental comparisons were done and acceptable agreement was obtained. On the other side, it was found that sound inside the box reduces due to the smaller sound radiation generated by the treated panel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号