首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Critical velocity of an infinite long sandwich shell under moving internal pressure is studied using the sandwich shell theory and elastodynamics theory. Propagation of axisymmetric free harmonic waves in the sandwich shell is studied using the sandwich shell theory by considering compressibility and transverse shear deformation of the core, and transverse shear deformation of face sheets. Based on the elastodynamics theory, displacement components expanded by Legendre polynomials, and position-dependent elastic constants and densities are introduced into the equations of motion. Critical velocity is the minimum phase velocity on the desperation relation curve obtained by using the two methods. Numerical examples and the finite element (FE) simulations are presented. The results show that the two critical velocities agree well with each other, and two desperation relation curves agree well with each other when the wave number k is relatively small. However, two limit phase velocities approach to the shear wave velocities of the face sheet and the core respectively when k limits to infinite. The two methods are efficient in the investigation of wave propagation in a sandwich cylindrical shell when k is relatively small. The critical velocity predicted in the FE simulations agrees with theoretical prediction.  相似文献   

2.
对于板壳问题,共有三种数值模拟方案:线性或非线性的板壳理论、退化连续体方案和直接三维连续体方案。无网格法近似函数可具有C1甚至更高的连续性,便于在K irchhoff-Love理论中应用。但当各种无网格法用于M ind lin-R e issner板理论时,会遇到数值锁死的困扰。对比之下,三维连续体方案是最简单,最精确但并不常用的一种方案。无网格法近似函数具有高度光滑性,在板壳的厚度方向仅布置2~5层点就可以很好地捕捉此方向场的梯度,同时还可以在一定参数范围内避免剪切和体积锁死,在处理复杂本构关系、非线性板壳等问题中更是具有很大优势。本文采用无网格伽辽金法(EFG)和三维连续体方案分析了线性板壳问题,与有限单元法做了对比,并讨论了数值锁死等问题。  相似文献   

3.
Free vibration of circular cylindrical shell with constrained layer damping   总被引:1,自引:0,他引:1  
Free vibration characteristics of circular cylindrical shell with passive constrained layer damping (PCLD) are presented. Wave propagation approach rather than finite element method, transfer matrix method, and Rayleigh-Ritz method is used to solve the problem of vibration of PCLD circular cylindrical shell under a simply supported boundary condition at two ends. The governing equations of motion for the orthotropic cylindrical shell with PCLD are derived on the base of Sanders’ thin shell theory. Numerical results show that the present method is more effective in comparison with other methods. The effects of the thickness of viscoelastic core and constrained layer, the elastic modulus ratio of orthotropic constrained layer, the complex shear modulus of viscoelastic core on frequency parameter, and the loss factor are discussed.  相似文献   

4.
The problem of a screw dislocation interacting with a core–shell nanowire (coated nanowire) containing interface effects (interface stresses) is first investigated. The interaction energy and the interaction force are calculated. The interaction force and the equilibrium position of the dislocation are examined for variable parameters (interface stress and material mismatch). The influence of the core–shell nanowire and the interface stresses on the interaction between two screw dislocations is also considered. The results show that the impact of the interface stresses on the motion and the equilibrium position of the dislocation near the core–shell nanowire is very significant when the radius of the nanowire is reduced to nanometer scale.  相似文献   

5.
This paper explores the mechanisms of the residual stress generation in thin film systems with large lattice mismatch strain, aiming to underpin the key mechanism for the observed variation of residual stress with the film thickness. Thermal mismatch, lattice mismatch and interface misfit dislocations caused by the disparity of the material layers were investigated in detail. The study revealed that the thickness-dependence of the residual stresses found in experiments cannot be elucidated by thermal mismatch, lattice mismatch, or their coupled effect. Instead, the interface misfit dislocations play the key role, leading to the variation of residual stresses in the films of thickness ranging from 100 nm to 500 nm. The agreement between the theoretical analysis and experimental results indicates that the effect of misfit dislocation is far-reaching and that the elastic analysis of dislocation, resolved by the finite element method, is sensible in predicting the residual stress distribution. It was quantitatively confirmed that dislocation density has a significant effect on the overall film stresses, but dislocation distribution has a negligible influence. Since the lattice mismatch strain varies with temperature, it was finally confirmed that the critical dislocation density that leads to the measured residual stress variation with film thickness should be determined from the lattice mismatch strain at the deposition temperature.  相似文献   

6.
Recent interests in curvature- and stress-induced pattern formation and pattern selection motivate the present study. Surface morphological wrinkling of a cylindrical shell supported by a soft core subjected to axial compression is investigated based on a nonlinear 3D finite element model. The post-buckling behavior of core–shell cylinders beyond the first bifurcation often leads to complicated responses with surface mode transitions. The proposed finite element framework allows predicting and tracing these bifurcation portraits from a quantitative standpoint. The occurrence and evolution of 3D instability modes including sinusoidally deformed axisymmetric patterns and non-axisymmetric diamond-like modes will be highlighted according to critical dimensionless parameters. Besides, the phase diagram obtained from dimensional analyses and numerical results could be used to guide the design of core–shell cylindrical systems to achieve the desired instability patterns.  相似文献   

7.
The contribution deals with an extension of a classical Neo–Hookean model for compressible isotropic materials to transverse isotropy. With this enhancement for one preferred material direction there is a possibility to simulate large strains in volume changes of the isotropic basic continuum and supplementary in fiber direction. The integrity basis of polynomial invariants in case of transversely isotropic hyperelasticity consists of three principal invariants of the isotropic basic continuum and additionally of two principal invariants for the preferred material direction. The proposed stored energy function for transverse isotropy contains the classical theory near to the natural state and fulfills the restriction on polyconvexity and coerciveness.By numerical enforcement of the material model into shell kinematics without rotational variables a four-node isoparametric finite element is developed using special concepts to avoid locking. The capability of the algorithms proposed is demonstrated by a numerical example involving large strains as well as finite rotations.  相似文献   

8.
In this paper Reissner-Mindlin plate theory is extended to cater for curved shell structures. It can be considered as Reissner-Mindlin type shell theory. From this theory, the C(O) continuity formulation of shell elements of taking account the transverse shear deformation could be derived directly. These degenerated shell elements have been widely employed. To overcome the locking of shear and membrane and avoid zero energy modes the author proposed the formulation of the new elements with assumed strains. A wide range of numerical tests was conducted and the results illustrate that the assumed strain elements possess high accuracy and good performance.  相似文献   

9.
本文根据塑性流动理论的基本公式,由隐式积分导出了与路径无关的变量更新算法和一致切线模量。采用单元广义应力应变直接离散塑性流动定律,构造了杂交应力单元一致切线刚度矩阵的显式表达式,编制了结构有限元程序SAFE,数值算例表明:本文的计算方法和计算程序是正确可靠的,可用于弹塑性板壳结构的非线性分析,计算结果屈曲临界载荷和极限承载能力。  相似文献   

10.
A study on free harmonic wave propagation in a double-walled cylindrical shell, whose walls sandwich a layer of porous materials, is presented within the framework of the classic theory for laminated composite shells. One of the most effective components of the wave propagation through the porous core is estimated with the aid of a fiat panel with the same geometrical properties. By considering the effective wave component, the porous layer is modeled as a fluid with equivalent properties. Thus, the model is simplified as a double-walled cylindrical shell trapping the fluid media. Finally, the transmission loss (TL) of the structure is estimated in a broadband frequency, and then the results are compared.  相似文献   

11.
Summary An elasticity solution has been obtained for a long, thick transversely isotropic circular cylindrical shell subjected to distributed pinch load using a set of three displacement functions. Numerical results are presented for different materials and thickness to mean radius ratios. The results obtained from this analysis have been compared with classical and first-order shear deformation shell theories of Flugge, Sanders, Love and Donnell.  相似文献   

12.
In this paper, molecular dynamics (MD) calculations have been used to examine the physics behind continuum models of misfit dislocation formation and to assess the limitations and consequences of approximations made within these models. Without compromising the physics of misfit dislocations below a surface, our MD calculations consider arrays of dislocation dipoles constituting a mirror imaged “surface”. This allows use of periodic boundary conditions to create a direct correspondence between atomistic and continuum representations of dislocations, which would be difficult to achieve with free surfaces. Additionally, by using long-time averages of system properties, we have essentially reduced the errors of atomistic simulations of large systems to “zero”. This enables us to deterministically compare atomistic and continuum calculations. Our work results in a robust approach that uses atomistic simulation to accurately calculate dislocation core radius and energy without the continuum boundary conditions typically assumed in the past, and the novel insight that continuum misfit dislocation models can be inaccurate when incorrect definitions of dislocation spacing and Burgers vector in lattice-mismatched systems are used. We show that when these insights are properly incorporated into the continuum model, the resulting energy density expression of the lattice-mismatched systems is essentially indistinguishable from the MD results.  相似文献   

13.
众所周知,弹性球壳在翻转后可能不再保持球壳形状而出现起皱现象,也就是出现分支解。本文运用WKB方法,分析了各向同性且不可压缩的超弹性Varga材料球壳翻转后的变形问题。在大模数情形下,对于A-B=O(1),得到了球壳内、外径比的分支临界值的渐近表达式。对模数区域内几乎所有的模数,分析结果与数值结果吻合得很好。  相似文献   

14.
本文从三维弹性理论出发,用特征函数法研究多层横观各向同性圆柱壳的轴对称问题.把位移和应力分量的齐次解表达成特征函数展开式,并把特解部分用Fourier级数表示.以多层圆柱壳的内、外柱面作为齐次边界,同时考虑层间的连续条件,推导出问题的特征方程并用Muller法求解.文中运用传递矩阵技术处理多层问题,并用边界型最小二乘配点法处理端部边界条件.作为实例,对双层圆柱壳作了数值计算.  相似文献   

15.
Abstract

In this paper, three-dimensional static and free vibration analysis of functionally graded graphene platelets-reinforced composite (FG-GPLRC) truncated conical shells, cylindrical shells and annular plates with various boundary conditions is carried out within the framework of elasticity theory. The main contribution of the present work is that formulation for free vibration and bending behavior of the FG-GPLRC truncated conical shell based on theory of elasticity has not yet been reported. Additionally, formulation and solution for cylindrical shell and annular plate are derived by changing the semi vertex angle in formulation and solution of FG-GPLRC truncated conical shell. A semi-analytical solution is proposed base on employing differential quadrature method (DQM) together with state-space technique. Validity of current approach is assessed by comparing its numerical results with those available in the literature. An especial attention is drawn to the role of GPLs weight fraction, patterns of GPLs distribution through the thickness direction, geometrical parameters such as semi-vertex angle, length to mid-radius ratio on natural frequencies and bending characteristics. Numerical results reveal that desirable static and free vibration response (such as lower radial deflection and higher natural frequencies) can be achieved by locating more square shaped GPLs near inner and outer surfaces.  相似文献   

16.
This paper deals with an analytical approach of the buckling behavior of a functionally graded circular cylindrical shell under axial pressure with external axial and circumferential stiffeners. The shell properties are assumed to vary continuously through the thickness direction. Fundamental relations and equilibrium and stability equations are derived using the third-order shear deformation theory. The resulting equations are employed to obtain the closed-form solution for the critical buckling loads. A simply supported boundary condition is considered for both edges of the shell. The comparison of the results of this study with those in the literature validates the present analysis. The effects of material composition (volume fraction exponent), of the number of stiffeners and of shell geometry parameters on the characteristics of the critical buckling load are described. The analytical results are compared and validated using the finite-element method. The results show that the inhomogeneity parameter, the geometry of the shell and the number of stiffeners considerably affect the critical buckling loads.  相似文献   

17.
夹层圆柱壳振动的谱有限元分析   总被引:2,自引:0,他引:2  
从哈密顿变分原理获得夹层圆柱壳的运动微分方程和边界条件,将谱有限元法用于夹层圆柱壳结构,推导出不同周向模态下夹层圆柱壳单元的动力刚度矩阵和隐式动力形状函数,分析长径比、径厚比、芯表厚度比、芯表模量比对固有频率和模态损耗因子的影响.研究表明:小径厚比、大长径比及大芯表厚度比有利于抑制夹层圆柱壳振动.  相似文献   

18.
Heterogeneous nucleation and spread of dislocation loops driven by high epitaxial strain characterizes a conceivable failure mode of multi-layer material structures of potential interest for microelectronic applications. A three-dimensional boundary element method with a singularity exclusion scheme is applied herein for dislocation loops nucleated from a weak spherical inclusion bisecting the epitaxial interface between a strained layer and its substrate. The results show that the critical epitaxial strain to nucleate a dislocation loop minimizes at an intermediate range of defect sizes, namely, from about 5 to 500 nm for a GeSi alloy strained layer on a Si substrate. The expansion of the nucleated dislocation loops around the weak inclusion is simulated numerically, and the results depict the formation of threading dislocations in both uncapped and capped epitaxial surface layers. The pair of threading dislocations are driven out on opposite sides of the inclusion, leaving behind arrays of misfit dislocations along the interface. The interaction of multiple dislocation loops generated from one inclusion is also considered.  相似文献   

19.
We consider the stability of a thin transversally isotropic circular cylindrical shell under axial compression. We use a local approach according to which the buckling deflection is sought in the form of a doubly periodic function of curvilinear coordinates and the boundary conditions are ignored. We compare the solutions obtained according to the two-dimensional Kirchhoff-Love (KL) and Timoshenko-Reissner (TR) models with the solutions constructed according to the three-dimensional theory. Attention is mainly paid to the case of very small shear stiffness in the transverse direction.  相似文献   

20.
针对航天工程中常用的承受轴压作用的薄壁圆柱壳,分别采用解析方法与特征值屈曲有限元方法分析了圆柱壳结构在均匀轴压作用下的稳定性能,得到了屈曲承载力.并进行了对比,验证了有限元模型的合理性.采用线性屈曲特征值有限元方法分析了强激光辐照作用下圆柱壳的稳定性能,分析表明激光辐照导致壳体局部温度上升并由此带来材料参数的改变,是因为激光辐照在壳体中引起了热应力与热应变,使轴压圆柱壳的屈曲承载力明显降低.论文还着重对加筋圆柱壳结构的稳定性进行了研究,数值分析结果表明,加筋能有效提高圆柱壳结构的抗压承载力,激光辐照作用下,加筋对轴压作用下圆柱壳的屈曲承载力的提高作用更为明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号