首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1229篇
  免费   193篇
  国内免费   106篇
化学   685篇
晶体学   12篇
力学   49篇
综合类   18篇
数学   185篇
物理学   579篇
  2023年   31篇
  2022年   29篇
  2021年   32篇
  2020年   47篇
  2019年   36篇
  2018年   36篇
  2017年   36篇
  2016年   46篇
  2015年   36篇
  2014年   56篇
  2013年   65篇
  2012年   82篇
  2011年   103篇
  2010年   79篇
  2009年   83篇
  2008年   81篇
  2007年   54篇
  2006年   49篇
  2005年   54篇
  2004年   49篇
  2003年   52篇
  2002年   39篇
  2001年   33篇
  2000年   24篇
  1999年   43篇
  1998年   42篇
  1997年   39篇
  1996年   30篇
  1995年   27篇
  1994年   22篇
  1993年   22篇
  1992年   12篇
  1991年   10篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1987年   9篇
  1986年   11篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   7篇
  1977年   1篇
排序方式: 共有1528条查询结果,搜索用时 18 毫秒
1.
Wang  Xigui  Ruan  Jiafu  Wang  Yongmei  Ji  Shue  An  Siyuan 《Meccanica》2021,56(2):303-316
Meccanica - In gear pair actual alternating meshing process, the comprehensive errors of the transmission system and the thermal elastic deformation of the teeth body cause the gears in the meshing...  相似文献   
2.
木质素是一种天然芳香族聚合物,约占木质纤维素的30%,是唯一通过裂解C―O醚键和C―C键生产芳香族化学品或液体燃料的可再生芳香族资源。迄今为止,对木质素氢解制备有价值化合物的研究主要集中在相对不稳定的C―O键的裂解上,这限制了木质素氢解的效率。采用水热法和湿浸渍法制备了多功能Pt/NbPWO催化剂。通过破坏碱木质素中的C―O键和C―C键,可以得到产率为18.02%的芳香族单体。该反应不仅可以断裂木质素聚合物中醚键,同时也可以断裂部分关键的C―C键。其氢解机理可能是丰富的Brønsted酸和Lewis酸位点参与了C―C的活化。此外,重点分析载体和Pt物种在Pt/NbPWO催化剂中的协同作用。  相似文献   
3.
The coordination of silver cation to diphosphene Mes*P=PMes* ( 1 , Mes* = tBu3C6H2) was investigated in detail. The reaction of 1 with Ag[Al(ORF)4] (ORF = OC(CF3)3) in the ratios of 2 : 1, 3 : 2 and 1 : 2 led to the formation of the first cationic silver linked diphosphene complexes 2 — 4 . Complexes 2 and 3 contain two and three diphosphene molecules linked by the linear Ag(I) cation, respectively, and they feature unusual zig‐zag topologies. Complex 4 is a dinuclear silver complex, and each Ag(I) center features a tetrahedral geometry, coordinated by one phosphorus atom of diphosphene 1 and three chloro atoms of two CH2Cl2 molecules.  相似文献   
4.
Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies. In this study, we examine the impact of O-glycosylation on the binding selectivity of a model Family 1 carbohydrate-binding module (CBM), which has been shown to be one of the primary sub-domains responsible for non-productive lignin binding in multi-modular cellulases. Specifically, we examine the relationship between glycan structure and the binding specificity of the CBM to cellulose and lignin substrates. We find that the glycosylation pattern of the CBM exhibits a strong influence on the binding affinity and the selectivity between both cellulose and lignin. In addition, the large set of binding data collected allows us to examine the relationship between binding affinity and the correlation in motion between pairs of glycosylation sites. Our results suggest that glycoforms displaying highly correlated motion in their glycosylation sites tend to bind cellulose with high affinity and lignin with low affinity. Taken together, this work helps lay the groundwork for future exploitation of glycoengineering as a tool to improve the performance of industrial enzymes.

Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies.

The cell walls of terrestrial plants primarily comprise the polysaccharides cellulose, hemicellulose, and pectin, as well as the heterogeneous aromatic polymer, lignin. In nature, carbohydrates derived from plant polysaccharides provide a massive carbon and energy source for biomass-degrading fungi, bacteria, and archaea, which together are the primary organisms that recycle plant matter and are a critical component of the global carbon cycle. Across the various environments in which these microbes break down lignocellulose, a few known enzymatic and chemical systems have evolved to deconstruct polysaccharides to soluble sugars.1–6 These natural systems are, in several cases, being evaluated for industrial use to produce sugars for further conversion into renewable biofuels and chemicals.From an industrial perspective, overcoming biomass recalcitrance to cost-effectively produce soluble intermediates, including sugars for further upgrading remains the main challenge in biomass conversion. Lignin, the evolution of which in planta provided a significant advantage for terrestrial plants to mitigate microbial attack, is now widely recognized as a primary cause of biomass recalcitrance.7 Chemical and/or biological processing scenarios of lignocellulose have been evaluated8 and several approaches have been scaled to industrial biorefineries to date. Many biomass conversion technologies overcome recalcitrance by partially or wholly removing lignin from biomass using thermochemical pretreatment or fractionation. This approach enables easier polysaccharide access for carbohydrate-active enzymes and/or microbes. There are however, several biomass deconstruction approaches that employ enzymes or microbes with whole, unpretreated biomass.9,10 In most realistic biomass conversion scenarios wherein enzymes or microbes are used to depolymerize polysaccharides, native or residual lignin remains.11,12 It is important to note that lignin can bind and sequester carbohydrate-active enzymes, which in turn can affect conversion performance.13Therefore, efforts aimed at improving cellulose binding selectivity relative to lignin have emerged as major thrusts in cellulase studies.14–25 Multiple reports in the past a few years have made exciting new contributions to our collective understanding of how fungal glycoside hydrolases, which are among the most well-characterized cellulolytic enzymes given their importance to cellulosic biofuels production, bind to lignin from various pretreatments.15,17 Taken together, these studies have demonstrated that the Family 1 carbohydrate-binding modules (CBMs) often found in fungal cellulases are the most relevant sub-domains for non-productive binding to lignin,15,17,20,26 likely due to the hydrophobic face of these CBMs that is known to be also responsible for cellulose binding (Fig. 1).27Open in a separate windowFig. 1Model of glycosylated CBM binding the surface of a cellulose crystal. Glycans are shown in green with oxygen atoms in red, tyrosines known to be critical to binding shown in purple, and disulfide bonds Cys8–Cys25 and Cys19–Cys35 in yellow.Furthermore, several studies have been published recently using protein engineering of Family 1 CBMs to improve CBM binding selectivity to cellulose with respect to lignin. Of particular note, Strobel et al. screened a large library of point mutations in both the Family 1 CBM and the linker connecting the catalytic domain (CD) and CBM.21,22 These studies demonstrated that several mutations in the CBM and one in the linker led to improved cellulose binding selectivity compared to lignin. The emerging picture is that the CBM-cellulose interaction, which occurs mainly as a result of stacking between the flat, hydrophobic CBM face (which is decorated with aromatic residues) and the hydrophobic crystal face of cellulose I, is also likely the main driving force in the CBM-lignin interaction given the strong potential for aromatic–aromatic and hydrophobic interactions.Alongside amino acid changes, modification of O-glycosylation has recently emerged as a potential tool in engineering fungal CBMs, which Harrison et al. demonstrated to be O-glycosylated.28–31 In particular, we have revealed that the O-mannosylation of a Family 1 CBM of Trichoderma reesei cellobiohydrolase I (TrCel7A) can lead to significant enhancements in the binding affinity towards bacterial microcrystalline cellulose (BMCC).30,32,33 This observation, together with the fact that glycans have the potential to form both hydrophilic and hydrophobic interactions with other molecules, led us to hypothesize that glycosylation may have a unique role in the binding selectivity of Family 1 CBMs to cellulose relative to lignin and as such, glycoengineering may be exploited to improve the industrial performance of these enzymes. To test this hypothesis, in the present study, we systematically probed the effects of glycosylation on CBM binding affinity for a variety of lignocellulose-derived cellulose and lignin substrates and investigated routes to computationally predict the binding properties of different glycosylated CBMs.  相似文献   
5.
6.
The successive projections algorithm (SPA) is widely used to select variables for multiple linear regression (MLR) modeling. However, SPA used only once may not obtain all the useful information of the full spectra, because the number of selected variables cannot exceed the number of calibration samples in the SPA algorithm. Therefore, the SPA-MLR method risks the loss of useful information. To make a full use of the useful information in the spectra, a new method named “consensus SPA-MLR” (C-SPA-MLR) is proposed herein. This method is the combination of consensus strategy and SPA-MLR method. In the C-SPA-MLR method, SPA-MLR is used to construct member models with different subsets of variables, which are selected from the remaining variables iteratively. A consensus prediction is obtained by combining the predictions of the member models. The proposed method is evaluated by analyzing the near infrared (NIR) spectra of corn and diesel. The results of C-SPA-MLR method showed a better prediction performance compared with the SPA-MLR and full-spectra PLS methods. Moreover, these results could serve as a reference for combination the consensus strategy and other variable selection methods when analyzing NIR spectra and other spectroscopic techniques.  相似文献   
7.
8.
The first main‐group element radical based one‐dimensional magnetic chain ( 1K )n was realized by one‐electron reduction of the pyridinyl functionalized borane 1 with elemental potassium in THF in the absence of 18‐crown‐6 (18‐c‐6). The electron spin density of ( 1K )n mainly resides at the boron centers with a considerable contribution from central benzene and pyridine moieties. The spin centers exhibit an antiferromagnetic interaction as demonstrated by magnetic measurements and theoretical calculations. In contrast, the reduction in the presence of 18‐c‐6 afforded the separated radical anion salt 1K(Crown) , in which the potassium cation was trapped by THF and 18‐c‐6 molecules. Further one‐electron reduction of 1K(Crown) and ( 1K )n led to the diamagnetic monomer and polymer, respectively.  相似文献   
9.
High-internal-phase-emulsion polymers (polyHIPEs) show great promise as solid-phase-extraction (SPE) materials because of the tremendous porosity and highly interconnected framework afforded by the high-internal-phase-emulsion (HIPE) technique. In this work, polyHIPE monolithic columns as novel SPE materials were prepared and applied to trace enrichment of cytokinins (CKs) from complex plant samples. The polyHIPE monoliths were synthesized via the in-situ polymerization of the continuous phase of a HIPE containing styrene (STY) and divinylbenzene (DVB) in a stainless column, and revealed highly efficient and selective enrichment ability for aromatic compounds. Under the optimized experimental conditions, a method using a monolithic polyHIPE column combined with liquid chromatography–electrospray tandem mass spectrometry (LC–MS–MS) was developed for the simultaneous extraction and sensitive determination of trans-zeatin (tZ), meta-topolin (mT), kinetin (K), and kinetin riboside (KR). The proposed method had good linearity, with correlation coefficients (R 2) from 0.9957 to 0.9984, and low detection limits (LODs, S/N?=?3) in the range 2.4–47 pg mL?1 for the four CKs. The method was successfully applied to the determination of CKs in real plant samples, and obtained good recoveries ranging from 68.8 % to 103.0 % and relative standard deviations (RSDs) lower than 16 %.  相似文献   
10.
讨论一类非齐次非线性椭圆边界值问题.利用极大值原理证明了该问题解的梯度估计.作为它的应用得到了解的效率比估计.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号