首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了纳米线环形晶体薄膜涂层中失配位错偶极子与纳米线的干涉效应,并考虑纳米尺度应力效应及纳米线晶格失配的影响。运用弹性复势方法,分别获得了涂层和纳米线区域复势函数的精确解析解。利用求得的应力场和Peach-Koehler公式,得到了作用在螺型位错偶极子上像力和失配应力的精确表达式。算例结果表明,涂层纳米线界面应力和失配应力对涂层中失配位错偶极子的作用影响很大,由于界面应力和失配应力的存在,可以改变涂层内位错偶极子与纳米线干涉的引斥规律。与宏观尺度下的线型材料相比,纳米线材料由于界面效应的影响,位错偶极子在涂层中平衡位置的数量增加,涂层中更容易产生失配位错偶极子。考虑纳米线晶格失配的影响后,位错偶极子在涂层中平衡位置的数量增加。由此可知,减小纳米线晶格失配的影响,可以控制失配位错偶极子的产生。  相似文献   

2.
In the characteristic γ/γ microstructure of single crystal superalloys, misfit stresses occur due to a significant lattice mismatch of those two phases. The magnitude of this lattice mismatch depends on the chemical composition of both phases as well as on temperature. Furthermore, the lattice mismatch of γ and γ phases can be either positive or negative in sign. The internal stresses caused by such lattice mismatch play a decisive role for the micromechanical processes that lead to the observed macroscopic athermal deformation behavior of these high-temperature alloys. Three-dimensional discrete dislocation dynamics (DDD) simulations are applied to investigate dislocation glide in γ matrix channels and shearing of γ precipitates by superdislocations under externally applied uniaxial stresses, by fully taking into account internal misfit stresses. Misfit stress fields are calculated by the fast Fourier transformation (FFT) method and hybridized with DDD simulations. For external loading along the crystallographic [001] direction of the single crystal, it was found that the different internal stress states for negative and positive lattice mismatch result in non-uniform dislocation movement and different dislocation patterns in horizontal and vertical γ matrix channels. Furthermore, positive lattice mismatch produces a lower deformation rate than negative lattice mismatch under the same tensile loading, but for an increasing magnitude of lattice mismatch, the deformation resistance always diminishes. Hence, the best deformation performance is expected to result from alloys with either small positive, or even better, vanishing lattice mismatch between γ and γ phase.  相似文献   

3.
This article examines the time to activate Frank–Read sources in response to macroscopic strain rates ranging from 101 s−1 to 1010 s−1 in aluminium under athermal conditions. We develop analytical models of the bowing of a pinned dislocation segment as well as numerical simulations of three dimensional dislocation dynamics. We find that the strain rate has a direct influence on both the activation time and the source strength of Frank–Read sources at strain rates up to 106 s−1, and the source strength increases in almost direct proportion to the strain rate. This contributes to the increase in the yield stress of materials at these strain rates. Above 106 s−1, the speed of the bowing segments reaches values that exceed the domain of validity of the linear viscous drag law, and the drag law is modified to account for inertial effects on the motion of the dislocation. As a result the activation times of Frank–Read sources reach a finite limit at strain rates greater than 108 s−1, suggesting that Frank–Read sources are unable to operate before homogeneous nucleation relaxes elastic stresses at the higher strain rates of shock loading. Elastodynamic calculations are carried out to compare the contributions of Frank–Read sources and homogeneous nucleation of dislocations to plastic relaxation. We find that at strain rates of 5×107 s−1 homogeneous nucleation becomes the dominant generation mechanism.  相似文献   

4.
This paper presents an analysis of a single vertical crack and periodically distributed vertical cracks in an epitaxial film on a semi-infinite substrate where the cracks penetrate into the substrate. The film and substrate materials have different anisotropic elastic constants, necessitating Stroh formalism in the analysis. The misfit strain due to the lattice mismatch between the film and the substrate serves as the driving force for crack formation. The solution for a dislocation in an anisotropic trimaterial is used as a Green function, so that the cracks are modeled as the continuous distributions of dislocations to yield the singular integral equations of Cauchy-type. The Gauss–Chebyshev quadrature formula is adopted to solve the singular integral equations numerically. Energy arguments provide the critical condition for crack formation, at which the cracks are energetically favorable configurations, in terms of the ratio of the penetration depth into the substrate to the film thickness, the ratio of the spacing of the periodic cracks to the film thickness, and the generalized Dundurs parameters between the film and substrate materials.  相似文献   

5.
The elastic strain and stress fields associated with nanoscale compositional modulation in an anisotropic epitaxial film on an anisotropic substrate are obtained by using Stroh formalism and the Eshelby-type inclusion method. The composition of the epitaxial film is considered to periodically fluctuate in a surface soft mode, with the amplitude of the composition modulation maximal near the growing surface and decreasing exponentially into the film. It has been experimentally observed that the composition modulation affects the formation of a new type of crystal defects, i.e., misfit dislocation dipoles, in III–V compound semiconductor materials. The formation energy of a misfit dislocation dipole under the elastic fields due to the composition modulation is calculated in this study. It is composed of the core and self energies of two dislocations, the interaction energy between two dislocations, and the interaction energies between the composition modulation and two dislocations. Numerical calculations are performed for a dislocation dipole in a lattice-matched Ga0.5In0.5P film on a GaAs substrate.  相似文献   

6.
为深入了解纳米金属多层膜在沉积法交替制备中, 因晶格失配制备出不同半共格界面的金属多层膜受载诱导的力学特性差异的机制,本文作者基于经典力学的分子动力学法,对半共格Cu基Ni膜和Ni基Cu膜两种界面结构的力学性能展开探析,揭示出多层膜半共格界面失配位错网与压痕诱导产生可动位错的相互作用规律. 研究发现: 铜镍双层膜半共格界面结构可有效提升力学性能,归因于铜镍半共格界面受载产生的柏氏矢量Shockley分位错的差异. Cu基Ni膜半共格界面上的失配位错网对压痕中产生的可动位错表现为排斥,有利于位错穿透半共格区域进入铜基中,对外表现为强化作用;Ni基Cu膜半共格界面上的失配位错网对压痕中产生的可动位错表现为吸引,阻碍位错穿透半共格区域进入镍基中,对外表现为软化作用,增强了材料抵抗变形的能力、耐磨性和韧性. 该性质差异可用Koehler提出的两种不同材料模量间镜像力理论解释. 此研究结果对铜镍多层膜作为涂层应用于微机电系统、海洋装备和航空航天等重大战略领域有着重要理论指导意义与借鉴价值.   相似文献   

7.
A novel method is proposed to design neutral N-phase (N ? 3) elliptical inclusions with internal uniform hydrostatic stresses. We focus on the study of the internal and external stress states of an N-phase elliptical inclusion which is bonded to an infinite matrix through (N ? 2) interphase layers. The interfaces of the N-phase elliptical inclusion are (N ? 1) confocal ellipses. The design of the resulting overall composite material consists of four stages: (i) an inner perfectly bonded interphase/inclusion interface which is necessary to make the internal uniform stress state hydrostatic; (ii) outer imperfect interphase layers properly designed to make the coated inclusion harmonic (i.e., the uniform mean stress of the original field within the matrix is unperturbed); (iii) the aspect ratio of the elliptic inclusion uniquely chosen for a given material and thickness parameters to make the resulting coated inclusion neutral (i.e., the prescribed uniform stress field in the matrix remains undisturbed); and finally (iv) the derivation of a simple condition relating the remote uniform stresses and the thickness parameters of the (N ? 2) interphase layers for given material parameters which lead to internal uniform hydrostatic stresses. We note that another interesting feature of the present results is that the mean stress is found to be constant within each interphase layer, and the hoop stress in the innermost interphase layer is uniform along the entire interphase/inclusion interface.  相似文献   

8.
9.
Employing crystal plasticity theory and micromechanics inclusion theory, we developed a full-strain relaxation model under isotropic assumption of materials properties to predict the dependence of the critical shell thickness (CST) for defect-free core/shell nanowires (NWs) on their growth direction. Unlike prior models, we consider three important factors in the energetic analysis (1) the self-energy of a dislocation loop in a finite domain, (2) the three-dimensional mismatch strains that develop in core/shell NWs (axial, radial and tangential directions) as a result of the finite NW geometry and the lattice mismatch between the core and shell materials, and (3) the three-dimensional plastic strains from misfit dislocations that nucleate to relax the mismatch strains. With these, the full-relaxation model is able to reveal that (i) the variation of the CST with growth direction depends on the core radius, (ii) misfit dislocations will not nucleate when the core radius falls below a critical value, (iii) the CST tends to a constant as the core radius increases, and (iv) the CST predicted by prior uniaxial-strain relaxation models is a lower bound.  相似文献   

10.
A Somigliana dislocation dipole model is developed to determine the critical thickness for misfit twin formation in an epilayer with different elastic constants from its substrate. The critical dipole arm length is determined by minimizing the twin formation energy for a given epilayer thickness and lattice mismatch strain, while a zero value of the minimum formation energy determines the critical thickness for misfit twinning. The results obtained by the Somigliana dislocation dipole model are roughly consistent with those by the previous dislocation-based twinning model.  相似文献   

11.
The elastic behavior of a screw dislocation which is positioned inside the shell domain of an eccentric core–shell nanowire is addressed with taking into account the surface/interface stress effect. The complex potential function method in combination with the conformal mapping function is applied to solve the governing non-classical equations. The dislocation stress field and the image force acting on the dislocation are studied in detail and compared with those obtained within the classical theory of elasticity. It is shown that near the free outer surface and the inner core–shell interface, the non-classical solution for the stress field considerably differs from the classical one, while this difference practically vanishes in the bulk regions of the nanowire. It is also demonstrated that the surface with positive (negative) shear modulus applies an extra non-classical repelling (attracting) image force to the dislocation, which can change the nature of the equilibrium positions depending on the system parameters. At the same time, the non-classical solution fails when the dislocation approaches very close to the surface/interface with negative shear modulus. The effects of the core–shell eccentricity and nanowire diameter on dislocation behavior are discussed. It is shown that the non-classical surface/interface effect has a short-range character and becomes more pronounced when the nanowire diameter is smaller than 20 nm.  相似文献   

12.
Mechanistic explanations for the plastic behavior of a wrought magnesium alloy are developed using a combination of experimental and simulation techniques. Parameters affecting the practical sheet formability, such as strain hardening rate, strain rate sensitivity, the degree of anisotropy, and the stresses and strains at fracture, are examined systematically by conducting tensile tests of variously oriented samples at a range of temperatures (room temperature to 250 °C) and strain rates (10−5–0.1 s−1). Polycrystal plasticity simulations are used to model the observed anisotropy and texture evolution. Strong in-plane anisotropy observed at low temperatures is attributed to the initial texture and the greater than anticipated non-basal cross-slip of dislocations with 〈a〉 type Burgers vectors. The agreement between the measured and simulated anisotropy and texture is further validated by direct observations of the dislocation microstructures using transmission electron microscopy. The increase in the ductility with temperature is accompanied by a decrease in the flow stress, an increase in the strain rate sensitivity, and a decrease in the normal anisotropy. Polycrystal simulations indicate that an increased activity of non-basal, 〈c + a〉, dislocations provides a self-consistent explanation for the observed changes in the anisotropy with increasing temperature.  相似文献   

13.
The elastic solutions for a mixed dislocation in a general multilayer with N dissimilar anisotropic layers are obtained via a generalized image decomposition method. The original problem is decomposed into N homogeneous subproblems with strategically placed continuously distributed image (virtual) dislocations which satisfy the consistency conditions for degenerate N  M (M < N) layer problems. The image dislocations are used to satisfy the interface or free surface conditions, and represent the unknowns of the problem. The resulting singular Cauchy integral equations are transformed into non-singular Fredholm integral equations of the second kind using certain H- and I-integral transforms. The Fredholm integral equations are then solved via the classical Nyström method. The general decomposition and the elimination of all singular integrals yield an exact formulation of the problem; the approximation arises only in the Nyström method. The dislocation mixity and the number of layers dissimilar in thickness and elastic anisotropy can be handled without difficulty, constrained only by the number of linear algebraic equations in the Nyström method for large N. For the numerical study, image forces on a dislocation in two- and three-layer systems are calculated. The accuracy of the results is verified by checking the boundary conditions and by comparison with previous results. The dependence of the image force on the dislocation position and mixity, and on the layer thicknesses and elastic anisotropies, is also illustrated via numerical investigations.  相似文献   

14.
The complex variable method is employed to derive analytical solutions for the interaction between a piezoelectric screw dislocation and a Kelvin-type viscoelastic piezoelectric bimaterial interface. Through analytical continuation, the original boundary value problem can be reduced to an inhomogeneous first-order partial differential equation for a single function of location z = x + iy and time t defined in the lower half-plane, which is free of the screw dislocation. Once the initial, steady-state and far-field conditions are known, the solution to the first order differential equation can be obtained. From the solved function, explicit expressions are then derived for the stresses, strains, electric fields and electric displacements induced by the piezoelectric screw dislocation. Also presented is the image force acting on the screw dislocation due to its interaction with the Kelvin-type viscoelastic interface. The derived solutions are verified by comparing with existing solutions for the simplified cases, and various interesting features are observed, particularly for those associated with the image force.  相似文献   

15.
The tensile response of single crystal films passivated on two sides is analysed using climb enabled discrete dislocation plasticity. Plastic deformation is modelled through the motion of edge dislocations in an elastic solid with a lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation incorporated through a set of constitutive rules. The dislocation motion in the films is by glide-only or by climb-assisted glide whereas in the surface passivation layers dislocation motion occurs by glide-only and penalized by a friction stress. For realistic values of the friction stress, the size dependence of the flow strength of the oxidised films was mainly a geometrical effect resulting from the fact that the ratio of the oxide layer thickness to film thickness increases with decreasing film thickness. However, if the passivation layer was modelled as impenetrable, i.e. an infinite friction stress, the plastic hardening rate of the films increases with decreasing film thickness even for geometrically self-similar specimens. This size dependence is an intrinsic material size effect that occurs because the dislocation pile-up lengths become on the order of the film thickness. Counter-intuitively, the films have a higher flow strength when dislocation motion is driven by climb-assisted glide compared to the case when dislocation motion is glide-only. This occurs because dislocation climb breaks up the dislocation pile-ups that aid dislocations to penetrate the passivation layers. The results also show that the Bauschinger effect in passivated thin films is stronger when dislocation motion is climb-assisted compared to films wherein dislocation motion is by glide-only.  相似文献   

16.
The problem of a screw dislocation interacting with a core–shell nanowire (coated nanowire) containing interface effects (interface stresses) is first investigated. The interaction energy and the interaction force are calculated. The interaction force and the equilibrium position of the dislocation are examined for variable parameters (interface stress and material mismatch). The influence of the core–shell nanowire and the interface stresses on the interaction between two screw dislocations is also considered. The results show that the impact of the interface stresses on the motion and the equilibrium position of the dislocation near the core–shell nanowire is very significant when the radius of the nanowire is reduced to nanometer scale.  相似文献   

17.
Time-dependent behaviors due to various mismatch strains are very important to the reliability of micro-/nano-devices. This paper aims at presenting an analytical model to study the viscoelastic stress relaxation of the laminated microbeam caused by mismatch strain. Firstly, Zhang’s two-variable method is used to establish a mechanical model for predicting the quasi-static stress relaxation of the laminated microbeam. Secondly, the related analytical solutions are obtained by combining the diffe...  相似文献   

18.
A model is developed for thermomechanical behavior of defective, low-symmetry ceramic crystals such as αα-corundum. Kinematics resolved are nonlinear elastic deformation, thermal expansion, dislocation glide, mechanical twinning, and residual lattice strains associated with eigenstress fields of defects such as dislocations and stacking faults. Multiscale concepts are applied to describe effects of twinning on effective thermoelastic properties. Glide and twinning are thermodynamically irreversible, while free energy accumulates with geometrically necessary dislocations associated with strain and rotation gradients, statistically stored dislocations, and twin boundaries. The model is applied to describe single crystals of corundum. Hardening behaviors of glide and twin systems from the total density of dislocations accumulated during basal slip are quantified for pure and doped corundum crystals. Residual lattice expansion is predicted from nonlinear elasticity and dislocation line and stacking fault energies.  相似文献   

19.
Current methodologies used for the inference of thin film stress through curvature measurements are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. Recently Huang, Rosakis and co-workers [Huang, Y., Ngo, D., Rosakis, A.J., 2005. Non-uniform, axisymmetric misfit strain: in thin films bonded on plate substrates/substrate systems: the relation between non-uniform film stresses and system curvatures. Acta Mech. Sin. 21, 362–370; Huang, Y., Rosakis A.J., 2005. Extension of Stoney’s Formula to non-uniform temperature distributions in thin film/substrate systems. The case of radial symmetry. J. Mech. Phys. Solids 53, 2483–2500; Ngo, D., Huang, Y., Rosakis, A. J., Feng, X. 2006. Spatially non-uniform, isotropic misfit strain in thin films bonded on plate substrates: the relation between non-uniform film stresses and system curvatures. Thin Solid Films (in press)] established methods for film/substrate system subject to non-uniform misfit strain and temperature changes. The film stresses were found to depend non-locally on system curvatures (i.e., depend on the full-field curvatures). The existing methods, however, all assume uniform film thickness which is often violated in the thin film/substrate system. We extend these methods to arbitrarily non-uniform film thickness for the thin film/substrate system subject to non-uniform misfit strain. Remarkably the stress-curvature relation for uniform film thickness still holds if the film thickness is replaced by its local value at the point where the stress is evaluated. This result has been experimentally validated in Part II of this paper.  相似文献   

20.
The effects of insoluble and soluble surfactant on the motion of a long bubble propagating through a capillary tube are investigated computationally using a finite-difference/front-tracking method. Emphasis is placed on the effects of surfactant on the liquid film thickness between the bubble and the tube wall. The numerical method is designed to solve the evolution equations of the interfacial and bulk surfactant concentrations coupled with the incompressible Navier–Stokes equations. A non-linear equation of state is used to relate surface tension coefficient to surfactant concentration at the interface. Computations are first performed for soluble cases and then repeated for the corresponding clean and insoluble cases for a wide range of governing non-dimensional parameters in order to investigate the effects of surfactant and surfactant solubility. The computed film thickness for the clean case is found to be in a good agreement with Taylor’s law indicating the accuracy of the numerical method. We found that both the insoluble and soluble surfactant generally have a thickening effect on the film thickness, which is especially pronounced at low capillary numbers. This thickening effect strengthens with increasing sensitivity of surface tension to interfacial surfactant coverage mainly due to the enhanced Marangoni stresses along the liquid film. It is also observed that film thickening shows a non-monotonic behavior for variations in Peclet number. The validity of insoluble surfactant assumption is assessed for various non-dimensional numbers and it is demonstrated that insoluble assumption is valid only when capillary number is very low, i.e., Ca  1 and when surface tension is highly sensitive to interfacial surfactant coverage, i.e., the elasticity number is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号