首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The weighted least-squares solutions of coupled singular matrix equations are too difficult to obtain by applying matrices decomposition. In this paper, a family of algorithms are applied to solve these problems based on the Kronecker structures. Subsequently, we construct a computationally efficient solutions of coupled restricted singular matrix equations. Furthermore, the need to compute the weighted Drazin and weighted Moore–Penrose inverses; and the use of Tian's work and Lev-Ari's results are due to appearance in the solutions of these problems. The several special cases of these problems are also considered which includes the well-known coupled Sylvester matrix equations. Finally, we recover the iterative methods to the weighted case in order to obtain the minimum D-norm G-vector least-squares solutions for the coupled Sylvester matrix equations and the results lead to the least-squares solutions and invertible solutions, as a special case.  相似文献   

2.
Two iterative algorithms are presented in this paper to solve the minimal norm least squares solution to a general linear matrix equations including the well-known Sylvester matrix equation and Lyapunov matrix equation as special cases. The first algorithm is based on the gradient based searching principle and the other one can be viewed as its dual form. Necessary and sufficient conditions for the step sizes in these two algorithms are proposed to guarantee the convergence of the algorithms for arbitrary initial conditions. Sufficient condition that is easy to compute is also given. Moreover, two methods are proposed to choose the optimal step sizes such that the convergence speeds of the algorithms are maximized. Between these two methods, the first one is to minimize the spectral radius of the iteration matrix and explicit expression for the optimal step size is obtained. The second method is to minimize the square sum of the F-norm of the error matrices produced by the algorithm and it is shown that the optimal step size exits uniquely and lies in an interval. Several numerical examples are given to illustrate the efficiency of the proposed approach.  相似文献   

3.
This paper is concerned with solutions to the so-called coupled Sylvester-transpose matrix equations, which include the generalized Sylvester matrix equation and Lyapunov matrix equation as special cases. By extending the idea of conjugate gradient method, an iterative algorithm is constructed to solve this kind of coupled matrix equations. When the considered matrix equations are consistent, for any initial matrix group, a solution group can be obtained within finite iteration steps in the absence of roundoff errors. The least Frobenius norm solution group of the coupled Sylvester-transpose matrix equations can be derived when a suitable initial matrix group is chosen. By applying the proposed algorithm, the optimal approximation solution group to a given matrix group can be obtained by finding the least Frobenius norm solution group of new general coupled matrix equations. Finally, a numerical example is given to illustrate that the algorithm is effective.  相似文献   

4.
We consider different iterative methods for computing Hermitian solutions of the coupled Riccati equations of the optimal control problem for jump linear systems. We have constructed a sequence of perturbed Lyapunov algebraic equations whose solutions define matrix sequences with special properties proved under proper initial conditions. Several numerical examples are included to illustrate the effectiveness of the considered iterations.  相似文献   

5.
本文提出了一种基于梯度的Sylvester共轭矩阵方程的迭代算法.通过引入一个松弛参数和采用递阶辨识原理,构造一个迭代算法求解Sylvester矩阵方程.通过应用复矩阵的实数表达以及实数表示的一些性质,收敛性分析表明在一定假设条件下,对于任意初始值,迭代方法均收敛到精确解,数值算例也表明了所给方法的有效性.  相似文献   

6.
This paper is concerned with solutions to the so-called coupled Sylveter-conjugate matrix equations, which include the generalized Sylvester matrix equation and coupled Lyapunov matrix equation as special cases. An iterative algorithm is constructed to solve this kind of matrix equations. By using the proposed algorithm, the existence of a solution to a coupled Sylvester-conjugate matrix equation can be determined automatically. When the considered matrix equation is consistent, it is proven by using a real inner product in complex matrix spaces as a tool that a solution can be obtained within finite iteration steps for any initial values in the absence of round-off errors. Another feature of the proposed algorithm is that it can be implemented by using original coefficient matrices, and does not require to transform the coefficient matrices into any canonical forms. The algorithm is also generalized to solve a more general case. Two numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

7.
An iterative method is proposed to solve generalized coupled Sylvester matrix equations, based on a matrix form of the least-squares QR-factorization (LSQR) algorithm. By this iterative method on the selection of special initial matrices, we can obtain the minimum Frobenius norm solutions or the minimum Frobenius norm least-squares solutions over some constrained matrices, such as symmetric, generalized bisymmetric and (RS)-symmetric matrices. Meanwhile, the optimal approximate solutions to the given matrices can be derived by solving the corresponding new generalized coupled Sylvester matrix equations. Finally, numerical examples are given to illustrate the effectiveness of the present method.  相似文献   

8.
Recently, Ding and Chen [F. Ding, T. Chen, On iterative solutions of general coupled matrix equations, SIAM J. Control Optim. 44 (2006) 2269-2284] developed a gradient-based iterative method for solving a class of coupled Sylvester matrix equations. The basic idea is to regard the unknown matrices to be solved as parameters of a system to be identified, so that the iterative solutions are obtained by applying hierarchical identification principle. In this note, by considering the coupled Sylvester matrix equation as a linear operator equation we give a natural way to derive this algorithm. We also propose some faster algorithms and present some numerical results.  相似文献   

9.
In the present paper, we propose a hierarchical identification method (SSHI) for solving Lyapunov matrix equations, which is based on the symmetry and skew-symmetry splitting of the coefficient matrix. We prove that the iterative algorithm consistently converges to the true solution for any initial values with some conditions, and illustrate that the rate of convergence of the iterative solution can be enhanced by choosing the convergence factors appropriately. Furthermore, we show that the method adopted can be easily extended to study iterative solutions of other matrix equations, such as Sylvester matrix equations. Finally, we test the algorithms and show their effectiveness using numerical examples.  相似文献   

10.

The solution of a large-scale Sylvester matrix equation plays an important role in control and large scientific computations. In this paper, we are interested in the large Sylvester matrix equation with large dimensionA and small dimension B, and a popular approach is to use the global Krylov subspace method. In this paper, we propose three new algorithms for this problem. We first consider the global GMRES algorithm with weighting strategy, which can be viewed as a precondition method. We present three new schemes to update the weighting matrix during iterations. Due to the growth of memory requirements and computational cost, it is necessary to restart the algorithm effectively. The deflation strategy is efficient for the solution of large linear systems and large eigenvalue problems; to the best of our knowledge, little work is done on applying deflation to the (weighted) global GMRES algorithm for large Sylvester matrix equations. We then consider how to combine the weighting strategy with deflated restarting, and propose a weighted global GMRES algorithm with deflation for solving large Sylvester matrix equations. In particular, we are interested in the global GMRES algorithm with deflation, which can be viewed as a special case when the weighted matrix is chosen as the identity. Theoretical analysis is given to show rationality of the new algorithms. Numerical experiments illustrate the numerical behavior of the proposed algorithms.

  相似文献   

11.
This paper presents an iterative algorithm to solve a class of generalized coupled Sylvester-transpose matrix equations over bisymmetric or skew-anti-symmetric matrices. When the matrix equations are consistent, the bisymmetric or skew-anti-symmetric solutions can be obtained within finite iteration steps in the absence of round-off errors for any initial bisymmetric or skew-anti-symmetric matrices by the proposed iterative algorithm. In addition, we can obtain the least norm solution by choosing the special initial matrices. Finally, numerical examples are given to demonstrate the iterative algorithm is quite efficient. The merit of our method is that it is easy to implement.  相似文献   

12.
This article is concerned with iterative techniques for linear systems of equations arising from a least squares formulation of boundary value problems. In its classical form, the solution of the least squares method is obtained by solving the traditional normal equation. However, for nonsmooth boundary conditions or in the case of refinement at a selected set of interior points, the matrix associated with the normal equation tends to be ill-conditioned. In this case, the least squares method may be formulated as a Powell multiplier method and the equations solved iteratively. Therein we use and compare two different iterative algorithms. The first algorithm is the preconditioned conjugate gradient method applied to the normal equation, while the second is a new algorithm based on the Powell method and formulated on the stabilized dual problem. The two algorithms are first compared on a one-dimensional problem with poorly conditioned matrices. Results show that, for such problems, the new algorithm gives more accurate results. The new algorithm is then applied to a two-dimensional steady state diffusion problem and a boundary layer problem. A comparison between the least squares method of Bramble and Schatz and the new algorithm demonstrates the ability of the new method to give highly accurate results on the boundary, or at a set of given interior collocation points without the deterioration of the condition number of the matrix. Conditions for convergence of the proposed algorithm are discussed. © 1997 John Wiley & Sons, Inc.  相似文献   

13.
Block-iterative methods for consistent and inconsistent linear equations   总被引:1,自引:0,他引:1  
Summary We shall in this paper consider the problem of computing a generalized solution of a given linear system of equations. The matrix will be partitioned by blocks of rows or blocks of columns. The generalized inverses of the blocks are then used as data to Jacobi- and SOR-types of iterative schemes. It is shown that the methods based on partitioning by rows converge towards the minimum norm solution of a consistent linear system. The column methods converge towards a least squares solution of a given system. For the case with two blocks explicit expressions for the optimal values of the iteration parameters are obtained. Finally an application is given to the linear system that arises from reconstruction of a two-dimensional object by its one-dimensional projections.  相似文献   

14.
等式约束加权线性最小二乘问题的解法   总被引:1,自引:0,他引:1  
1 引言 在实际应用中常会提出解等式约束加权线性最小二乘问题 min||b-Ax||_M,(1.1) x∈C~n s.t.Bx=d, 其中B∈C~(p×n),A∈C~(q×n),d∈C~p,b∈C~q,M∈C~(q×q)为Hermite正定阵. 对于问题(1.1),目前已有多种解法,见文[1—3).本文将利用广义逆矩阵的知识,给出(1.1)的通解及迭代解法.本文中关于矩阵广义逆与投影算子(矩阵)的记号基本上与文[4]的相同.例如,A~+表示A的MP逆,P_L表示到子空间L上的正交投影算子,λ_(max)(MAY)表示矩阵M~(1/2)AY的最大特征值.我们还要用到广义BD逆的概念: 设A∈C~(n×n),L为C~n的子空间,则称A_(L)~(+)=P_L(AP_L+P_L⊥)~+为A关于L的广义BD逆.  相似文献   

15.
有效求解连续的Sylvester矩阵方程对于科学和工程计算有着重要的应用价值,因此该文提出了一种可行的分裂迭代算法.该算法的核心思想是外迭代将连续Sylvester矩阵方程的系数矩阵分裂为对称矩阵和反对称矩阵,内迭代求解复对称矩阵方程.相较于传统的分裂算法,该文所提出的分裂迭代算法有效地避免了最优迭代参数的选取,并利用了复对称方程组高效求解的特点,进而提高了算法的易实现性、易操作性.此外,从理论层面进一步证明了该分裂迭代算法的收敛性.最后,通过数值算例表明分裂迭代算法具有良好的收敛性和鲁棒性,同时也证实了分裂迭代算法的收敛性很大程度依赖于内迭代格式的选取.  相似文献   

16.
极正交各向异性圆板非线性弯曲的定性分析及单调迭代解   总被引:3,自引:0,他引:3  
本文对极正交各向异性圆板在任意轴对称载荷和边界条件下的非线性弯曲问题进行了较为系统的研究.首先,将边值问题归结为等价的积分方程,并且借助于广义函数得到了线性问题的一般解答.其次,对导出的非线性积分方程解的性质作了较为细致的讨论,例如边缘皱褶,非负性和奇性等.然后,构造了解的双边单调迭代格式,并给出了迭代格式的收敛性判据和误差估计,同时还讨论了解的全局存在唯一性.最后,给出了一个数值例子来说明本文方法和结论的应用.本文某些结果是由作者新得到的.  相似文献   

17.
讨论了矩阵方程组A_1XB_1=D_1,A_2XB_2=D_2反对称最小二乘解的递推算法,该算法不仅能够用于计算反对称最小二乘解,而且在选取特殊的初始矩阵时,算法能够求出矩阵方程组的极小范数反对称最小二乘解,以及对给定的矩阵进行最佳逼近的反对称解.  相似文献   

18.
Summary This paper completes our previous discussion on the total least squares (TLS) and the least squares (LS) problems for the linear systemAX=B which may contain more than one solution [12, 13], generalizes the work of Golub and Van Loan [1,2], Van Huffel [8], Van Huffel and Vandewalle [11]. The TLS problem is extended to the more general case. The sets of the solutions and the squared residuals for the TLS and LS problems are compared. The concept of the weighted squares residuals is extended and the difference between the TLS and the LS approaches is derived. The connection between the approximate subspaces and the perturbation theories are studied.It is proved that under moderate conditions, all the corresponding quantities for the solution sets of the TLS and the modified LS problems are close to each other, while the quantities for the solution set of the LS problem are close to the corresponding ones of a subset of that of the TLS problem.This work was financially supported by the Education Committee, People's Republic of China  相似文献   

19.
The perturbation analysis of weighted and constrained rank‐deficient linear least squares is difficult without the use of the augmented system of equations. In this paper a general form of the augmented system is used to get simple perturbation identities and perturbation bounds for the general linear least squares problem both for the full‐rank and rank‐deficient problem. Perturbation identities for the rank‐deficient weighted and constrained case are found as a special case. Interesting perturbation bounds and condition numbers are derived that may be useful when considering the stability of a solution of the rank‐deficient general least squares problem. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
研究了Sylvester矩阵方程最小二乘解以及极小范数最小二乘解的迭代解法,首先利用递阶辨识原理,得到了求解矩阵方程AX+YB=C的极小范数最小二乘解的一种迭代算法,进而,将这种算法推广到一般线性矩阵方程A_iX_iB_i=C的情形,最后,数值例子验证了算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号