首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate a doubly resonant optical cavity containing a Kerr nonlinear medium that couples two modes by a cross phase modulation. One of these modes is driven by a single photon pulsed field, and the other mode is driven by a coherent state. We find an intrinsic phase noise mechanism for the cross phase shift on the coherent beam which can be attributed to the random emission times of single photons from the cavity. An application to a weak nonlinearity phase gate is discussed.  相似文献   

2.
3.
In this paper we study photon pairs generated in a nonlinear cavity composed of a nonlinear crystal surrounded by mirrors, by the process of spotaneous parametric downconversion. We analyze two different regimes: singly-resonant cavities where the signal and idler modes are resonant and doubly-resonant cavities where the pump mode is also resonant. We present analytic expressions for the joint spectral amplitude in these two cases and study the reduction in emission bandwidth as the cavity coefficient finesse is increased. We also study the enhancement of the source brightness from the presence of the cavity.  相似文献   

4.
赵彦辉  钱琛江  唐静  孙悦  彭凯  许秀来 《物理学报》2016,65(13):134206-134206
光子晶体微腔和量子点的集成是实现量子信息处理非常具有潜力的平台之一,利用微腔和量子点的耦合可以制备纠缠光子对,实现对量子态的操控.因为光子晶体微腔具有品质因子高、模场体积小等优点,可以极大地增强光与物质之间的相互作用,从而易于实现量子态在不同物理体系之间的转换.通过单量子点和光子晶体H1微腔的耦合可以产生纠缠光子对,因为H1微腔具有简并的、模式偏振正交的基态模式.通常微腔模式的激发随着量子点在微腔中的位置变化而改变,本文用时域有限差分方法研究了偶极子光源的位置及偏振对激发光子晶体H1微腔模式的影响.结果表明:通过改变偶极子光源位置可以选择性地激发H1微腔简并模式中的一个;具有某一偏振的偶极子光源只能激发相应偏振的微腔模式;模式激发强度的大小也是由偶极子光源在微腔中的位置决定的.鉴于目前量子点在微腔中的位置尚不能精确控制,所以微腔模式受激发光源位置的影响的研究具有重要意义.  相似文献   

5.
Two-mode mazer injected with V-type three-level atoms   总被引:1,自引:0,他引:1       下载免费PDF全文
梁文青  张智明  谢绳武 《中国物理》2003,12(12):1399-1413
The properties of the two-mode mazer operating on V-type three-level atoms are studied. The effect of the oneatom pumping on the two modes of the cavity field in number-state is asymmetric, that is, the atom emits a photon into one mode with some probability and absorbs a photon from the other mode with some other probability. This effect makes the steady-state photon distribution and the steady-state photon statistics asymmetric for the two modes. The diagram of the probability currents for the photon distribution, given by the analysis of the master equation, reveals that there is no detailed balance solution for the master equation. The computations show that the photon statistics of one mode or both modes can be sub-Poissonian, that the two modes can have anticorrelation or correlation, that the photon statistics increases with the increase of thermal photons, and that the resonant position and strength of the photon statistics are influenced by the ratio of the two coupling strengths of the two modes. These properties are also discussed physically.  相似文献   

6.
Xing-Hua Liu 《中国物理 B》2022,31(10):104206-104206
The authors demonstrate a Bull's eye cavity design that is composed of circular Bragg gratings and micropillar optical cavity in 4H silicon carbide (4H-SiC) for single photon emission. Numerical calculations are used to investigate and optimize the emission rate and directionality of emission. Thanks to the optical mode resonances and Bragg reflections, the radiative decay rates of a dipole embedded in the cavity center is enhanced by 12.8 times as compared to that from a bulk 4H-SiC. In particular, a convergent angular distribution of the emission in far field is simultaneously achieved, which remarkably boost the collection efficiency. The findings of this work provide an alternative architecture to manipulate light—matter interactions for achieving high-efficient SiC single photon sources towards applications in quantum information technologies.  相似文献   

7.
光纤光栅外腔半导体激光器的高频调制特性   总被引:5,自引:0,他引:5  
报道了光纤光栅外腔激光器瞬态特性的理论分析,引入了一个适用于外腔情况的等效光子寿命,模拟计算表明,要获得高于2.5GHz的调制速率,光纤光栅外腔的长度必须短于4cm范围,对所研制的光纤光栅外腔激光器进行了高频调制测量,得到了在1GHz下的单模激光输出,边模抑制比在40dB以上,3dB动态线宽为0.1nm左右,20dB动态线宽为0.3nm。  相似文献   

8.
A microfabricated Fabry-Perot optical resonator has been used for atom detection and photon production with less than 1 atom on average in the cavity mode. Our cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers. The presence of the atom is seen through changes in both the intensity and the noise characteristics of probe light reflected from the cavity input mirror. An excitation laser passing transversely through the cavity triggers photon emission into the cavity mode and hence into the single-mode fiber. These are first steps toward building an optical microcavity network on an atom chip for applications in quantum information processing.  相似文献   

9.
We demonstrate chaotic mode lasing in vertical cavity surface emitting lasers at room temperature, with an open cavity confined laterally by the native oxide layer. Instead of introducing any defect mode, we show that suppression of lower-order cavity modes can be achieved by destroying vertical reflectors with a surface microstructure. Lasing on chaotic modes is observed directly through collecting near-field radiation patterns. Various vertical emission transverse modes are identified by the spectrum in experiments as well as numerical simulations in real and phase spaces.  相似文献   

10.
We study the light generated by spontaneous emission into a mode of a cavity QED system under weak excitation of the orthogonally polarized mode. Operating in the intermediate regime of cavity QED with comparable coherent and decoherent coupling constants, we find an enhancement of the emission into the undriven cavity mode by more than a factor of 18.5 over that expected by the solid angle subtended by the mode. A model that incorporates three atomic levels and two polarization modes quantitatively explains the observations.  相似文献   

11.
Spontaneous emission of quantum dot systems in laterally structured microcavities that exhibit photon confinement in all three directions has been studied by time-resolved photoluminescence spectroscopy. For on-resonance conditions, we find that the dot emission rate is increased substantially over that of the unstructured planar cavity. For off-resonance conditions, we are able to suppress the emission rate by an order of magnitude by using cavities with metal coatings, which we attribute to the suppression of leaky optical modes in these structures.  相似文献   

12.
Ling T  Liu L  Song Q  Xu L  Wang W 《Optics letters》2003,28(19):1784-1786
Intense directional light emission from a deformed square-shaped organic light-emitting microring cavity was observed. The ring cavity was a dye-doped organic-inorganic hybrid glass film coated upon a square-shaped fiber. From the near-field and far-field emission patterns and their emission spectra we found, for the first time to our knowledge, the simultaneous existence of chaotic whispering-gallery modes and four-bounce reflection modes. The two types of mode have different emission directions, different lasing thresholds, and different spectral linewidths. High-contrast angle-modulated light emission was also observed. We could control modulation and angular spread of emission by controlling the deformation of the cavity.  相似文献   

13.
There are many important works about the construction of universal quantum logic gates which are key elements in quantum computation. However, most of them focus on quantum transformations on the same degree of freedom (DOF) of quantum systems. We propose a CNOT gate performed on the polarization DOF and spatial mode DOF of one photon system assisted by a quantum dot in double-side optical microcavities. This hyper CNOT gate is implemented by using spin selective photon reflection from the cavity, without auxiliary spatial modes or polarization modes. This interface can also be used to construct a hyper photonic Bell-state analyzer. The high fidelities of the hyper CNOT gates may be achieved with low side leakage and cavity loss.  相似文献   

14.
We examine the problem of efficiently collecting the photons produced by solid-state single photon sources. The extent of the problem is first established with the aid of simple physical concepts. Several approaches to improving the collection efficiency are then examined and are broadly categorized into two types. First are those based on cavity quantum dynamics, in which the pathways by which the source may emit a photon are restricted, thus channeling emission into one desired mode. Second are those where we try to reshape the free space modes into a target mode in an optimal way, by means of refraction, without fundamentally altering the way in which the source emits. Respectively, we examine a variety of microcavities and solid immersion lenses. Whilst we find that the micropillar microcavities offer the highest collection efficiency (∼70%), choosing this approach may not always be appropriate due to other constraints. Details of the different approaches, their merits and drawbacks are discussed in detail. Received 19 July 2001 and Received in final form 5 October 2001  相似文献   

15.
A single atom strongly coupled to a cavity mode is stored by three-dimensional confinement in blue-detuned cavity modes of different longitudinal and transverse order. The vanishing light intensity at the trap center reduces the light shift of all atomic energy levels. This is exploited to detect a single atom by means of a dispersive measurement with 95% confidence in 10 micros, limited by the photon-detection efficiency. As the atom switches resonant cavity transmission into cavity reflection, the atom can be detected while scattering about one photon.  相似文献   

16.
A hybrid cavity magnomechanical system to transfer the bipartite entanglements and achieve the strong microwave photon–phonon entanglement based on the reservoir engineering approach is constructed. The magnon mode is coupled to the microwave cavity mode via magnetic dipole interaction and to the phonon mode via magnetostrictive force (optomechanical-like). It is shown that the initial magnon-phonon entanglement can be transferred to the photon-phonon subspace in the case of these two interactions cooperating. In the reservoir-engineering parameter regime, the initial entanglement is directionally transferred to the photon-phonon subsystem, so a strong bipartite entanglement in which the magnon mode acts as the cold reservoir to effectively cool the Bogoliubov mode delocalized over the cavity and the mechanical deformation mode is obtained. Moreover, dual-mode cooling is realized by engineering the dissipation of photon and phonon modes within the target mode, which allows entanglement to be further enhanced. The results indicate that the steady-state entanglement is robust against temperature. The dual-mode cooling reservoir engineering scheme can potentially be extended to other three-mode quantum systems.  相似文献   

17.
Negativity has been adopted to investigate the entanglement in a system composed of a two-level atom and a two-mode cavity field. Effects of Kerr-like medium and the number of photon inside the cavity on the entanglement are studied. Our results show that atomic initial state must be superposed, so that the two cavityfield modes can be entangled. Moreover, we also conclude that the number of photon in the two cavity mode should be equal. The interaction between modes, namely, the Kerr effect, has a significant negative contribution. Note that the atom frequency and the cavity frequency have an indistinguishable effect, so a corresponding approximation has been made in this article. These results may be useful for quantum information in optics systems.  相似文献   

18.
We study entanglement of the cavity modes in a double-cavity optomechanical system in strong-coupling regime. The system is consist of two optomechanical systems coupled by a single photon hopping between them. With the radiation pressure of the photon, entanglement of the cavity modes can be generated. The average concurrence of the cavity modes is at least twice larger than that of the mechanical modes. Moreover, when we change the ratio between coupling strength and resonant frequency of mechanical modes, the entanglement in cavity and mechanical modes are influenced differently.  相似文献   

19.
We study the interaction of a multi-photon three-level atom with a single mode field in a cavity, taking explicitly into account the existence of forms of nonlinearities of both the field and the intensitydependent atom-field coupling. The analytical form of the emission spectrum is calculated using the dressed states of the system. The effects of photon multiplicities, mean photon number, detuning, Kerr-like medium, and the intensity-dependent coupling functional on the emission spectrum are analyzed.  相似文献   

20.
StudyingtheMode-SpectraCharacteristicsofAnAbove-ThresholdBiasedSemiconductorLaser¥XIAGuangqiong;WUZhengmao;CHENJianguo;LUYucu...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号