首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
以离子液体溴化(1-己基-3-甲基咪唑盐)作为电解质和掺杂剂采用电化学一步法制备了微纳米复合结构的聚(3,4-乙烯基二氧噻吩)薄膜, 薄膜由槽内排布着纳米珠链的棒状结构组成. 研究表明, 通过控制电流密度的大小, 可以调节棒状结构和珠状结构的平均直径. 离子液体中的咪唑阳离子和对阴离子均掺杂到聚合物中, 该薄膜具有可逆的电化学活性及水下超疏油特性.  相似文献   

2.
短链羟基甲基咪唑离子液体的合成与电化学性能   总被引:1,自引:1,他引:0  
赵艳青  王宏宇  高桂天  齐力 《应用化学》2012,29(12):1457-1462
通过2-(2-氯乙氧基)乙醇和2-溴乙醇分别与1-甲基咪唑反应,合成乙醇基甲基咪唑溴(EMIMBr)和乙氧基乙醇基甲基咪唑氯(EEMIMCl)2种羟基咪唑离子液体,用1H NMR和FT-IR表征结构,TG和DSC进行热性能测试,并研究了其电化学性能.结果表明,羟基类咪唑离子液体具有高的热稳定性,这种含醚氧键和羟基的短链离子液体有利于电导率的提高,导电机理符合Vogel-Tmman-Fulcher (VTF)方程.乙醇基甲基咪唑溴和乙氧基乙醇基甲基咪唑氯的室温电导率分别为1.2×10-4和1.7×10-4 S/cm.对于碳酸丙二醇酯、乙氧基乙醇基甲基咪唑氯和钾盐体系,室温电导率最高可达3.82×10-3 S/cm.乙氧基乙醇基甲基咪唑氯的电化学窗口为3.4V.  相似文献   

3.
以1-丁基-3-甲基咪唑四氟硼酸盐(BMIMBF4)离子液体作为介质,利用电化学方法在铂电极表面制备了磷钼酸掺杂聚吡咯薄膜;采用扫描电子显微镜观察了所制备的薄膜的形貌,利用热重分析评价了其热稳定性,利用循环伏安法测定了其电化学活性和对甲醇的电催化氧化活性.结果表明,与传统的硫酸溶液相比,以BMI-MBF4离子液体作为反应介质制备的修饰电极的表面形貌更均匀,电化学活性和对甲醇的电催化氧化活性更强.  相似文献   

4.
CH_2Cl_2对离子液体BmimPF_6中二茂铁电化学行为的影响   总被引:1,自引:0,他引:1  
应用循环伏安和交流阻抗法研究有机溶剂二氯甲烷对二茂铁在离子液体1-丁基-3-甲基咪唑六氟磷酸盐(Bm imPF6)中电化学行为的影响.实验表明,二氯甲烷可促进离子液体的离子解离,减小离子液体粘度,增加离子液体电导率,加速二茂铁在离子液体中的扩散,增大氧化还原峰电流.由于电极界面双电层结构的变化,导致双电层电容增大,电极反应电阻减小,从而加速了界面电子传递反应.  相似文献   

5.
沈薇  朱霞石 《分析化学》2012,40(1):150-154
以金属钇离子为原料,采用单宁酸直接还原法,以十六烷基三甲基溴化铵(CTAB)胶束和1-乙基-3-甲基咪唑乙基硫酸盐离子液体为修饰剂,制备钇纳米粒子.考察了离子液体对钇纳米粒子合成的影响,利用透射电镜表征所制得的粒子为金属钇纳米粒子.通过研究钇纳米粒子的光谱行为,建立了钇纳米荧光增敏法分析微量橙皮苷(HES)的方法.结果...  相似文献   

6.
采用水溶性三(间-磺酸钠苯基)膦(TPPTS)作稳定剂, 在离子液体1-丁基-3-甲基-咪唑四氟硼酸盐([BMIM]BF4)或1-丁基-3-甲基-咪唑对甲基苯磺酸盐([BMIM][p-CH3C6H4SO3])介质中用氢气还原RuCl3·3H2O, 得到钌纳米粒子. 将此钌纳米粒子与(1S, 2S)-1,2-二苯基乙二胺(简称(1S, 2S)-DPEN)、KOH在离子液体/异丙醇介质中原位生成一种不对称加氢催化剂, 用于催化苯乙酮及其衍生物的不对称加氢反应. 实验结果表明, 离子液体介质中的纳米钌催化剂体系具有良好的催化活性和对映选择性. 在优化反应条件下, 催化苯乙酮获得了100%的转化率和79.1%的对映选择性. 并且产物经正己烷萃取后, 含有钌纳米粒子的离子液体可以循环使用.  相似文献   

7.
以1-甲基咪唑、3-氯-环氧丙烷和四氟硼酸为原料,在30℃和超声波辅助作用下,合成了羟基功能化离子液体1-(3-氯-2-羟基丙基)-3-甲基咪唑四氟硼酸盐(CHPMIM.BF4)和1,3-二-(1-甲基咪唑基)-2-丙醇四氟硼酸盐盐酸盐(DMIMP.BF4.Cl),该方法大大缩短了反应时间,避免了无机盐的生成。它们的电化学稳定性和离子电导率测定结果表明,CHPMIM.BF4和DMIMP.BF4.Cl具有较好的电化学稳定性,电化学稳定窗口分别为4.6 V和4.7 V;但前者的离子导电率要远远小于后者,25℃时它们的电导率分别为0.26mS/cm和9.86mS/cm。  相似文献   

8.
通过乳化剂OP-10的乳化作用,将油相为溶有苯胺单体的1-丁基-3-甲基咪唑六氟磷酸盐([bmim]PF6)离子液体与水形成了水包油型微乳液.利用该微乳液制备了纳米粒径的导电聚苯胺颗粒.红外光谱和能量散射谱分析结果表明,离子液体负离子已掺杂进入聚苯胺分子链,所得聚苯胺颗粒热稳定性和电化学稳定性好,且具有良好的充放电性能.  相似文献   

9.
在离子液体1-甲基咪唑-三氟乙酸中用循环伏安法(CV)电聚合苯胺制得离子液体掺杂聚苯胺膜修饰玻碳电极(IL-PANI/GCE),进一步在其表面原位电沉积纳米铜粒子,构制用于测定H2O2的新型离子液体掺杂聚苯胺/纳米铜(nano-Cu/IL-PANI/GCE)电化学传感器。用扫描电镜(SEM)、循环伏安法(CV)和电化学阻抗谱法(EIS)表征此修饰电极,并讨论了其对H2O2的电催化还原机制。在0.1 mol/L NaOH溶液和"0.35 V电位下,用电流法测定了H2O2的含量,在20~1.12 mmol/L浓度范围内线性关系良好;检出限为0.1μmol/L,响应时间约为3 s。  相似文献   

10.
王妹丽  王娟  赵发琼  曾百肇 《分析化学》2011,39(7):1043-1047
新型萃取材料及相关涂层制备技术是固相微萃取技术发展的重点.本研究在1-羟丙基-3-甲基咪唑-四氟硼酸盐([C3(OH)mim][BF4])和HNO3混合溶液中,通过电化学方法在铂(Pt)丝表面固定新型聚苯胺-离子液体(PANI-IL)涂层.电镜分析表明,离子液体存在时,PANI膜孔结构变均匀、比表面积增大.以芳香胺为模...  相似文献   

11.
The electrochemical behavior of PEDOT/Pd composite films obtained by the chemical deposition of ultradisperse Pd particles in the poly-3,4-ethylenedioxythiophene (PEDOT) polymer matrix was studied. The structure of the films was determined by electron microscopy and energy-dispersion X-ray fluorescence analysis. The electrochemical properties of PEDOT/Pd composite films in solutions containing hydrogen peroxide was also studied. Special attention was paid to the effect of the time of the chemical deposition of palladium in the polymer structure on the electroreduction of hydrogen peroxide in phosphate buffer solutions.  相似文献   

12.
We report on the electrochemical synthesis of macroporous films and on nanowire architectures of conducting polymers from ionic liquids. The electrodeposition of poly(3,4-ethylenedioxythiophene) (PEDOT) and of poly(para-phenylene) (PPP) from the air and water stable ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIm]TFSA) and from 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([HMIm]FAP) within the voids of a polystyrene opal structure on gold and on platinum substrates yield macroporous films. For this purpose, polystyrene spheres with an average diameter of about 600?nm were applied onto the employed electrodes by a simple dipping process resulting in a layer thickness of about 10?μm. The macroporous films turn into yellow, orange, blue, and green colors owing to the Bragg reflection of the incident artificial white light. PPP and PEDOT nanowires were electrochemically prepared in a track-etched polycarbonate (PC) membrane with an average pore diameter of 90?nm. One side of the membrane was sputtered with a thin gold film to serve as a working electrode. Electrodeposition occurs along the pores of the template. Nanowires with an average diameter of 90?nm and a length of up to 17?μm can be easily synthesized by this electrochemical template-assisted method. Such materials are of interest as catalyst in metal/air batteries and as cathode material in, e.g., microbatteries.  相似文献   

13.
The present study is aimed to elucidate main structural features of polymeric sulfonic acids (the rigidity of main chain, the distance between sulfonic groups on the chain, the hydrophobicity of main chain or side fragments) on the course of 3,4-ethylenedioxythiophene (EDOT) electropolymerization and electronic and chemical structure of the poly(3,4-ethylenedioxythiophene) (PEDOT) films obtained. The films were prepared by electrochemical polymerization in cyclic voltammetry, potentiostatic, and galvanostatic regimes in aqueous solutions of different polyacids in the absence of supporting electrolyte. The effect of the chemical structure of polyacid on the course and rate of PEDOT synthesis was traced by electrochemical and in situ UV-Vis spectroscopic methods. It was shown that the highest rate of EDOT electropolymerization is achieved in the presence of flexible-chain polyacid having hydrophobic fragments (groups) in its structure, followed by hydrophobic rigid-chain polyacids. The lowest rate was observed in the presence of hydrophilic flexible-chain polyacid. The electronic and chemical structure of the PEDOT films obtained was studied by in situ UV-Vis-NIR and Raman spectroelectrochemistry. The films prepared in the presence of rigid-chain polyacids at high anodic potentials demonstrate decreased content of bipolaronic fragments in their structure, while PEDOT complexes with flexible-chain polyacids are very much like conventional polymer prepared in non-aqueous medium. The results are discussed in terms of conformational state (ability to form coils and thus concentrate the monomer) of different polyacids in aqueous solution and hydrophobic interactions between the polyacids and EDOT.  相似文献   

14.
The electrochemical behavior of PEDOT/Ag composite films obtained by chemical deposition of ultrafine Ag particles into the poly-3,4-ethylenedioxythiophene (PEDOT) matrix was studied. The film morphology was characterized by transmission electron microscopy (TEM). The changes in the mass of the films during the chemical deposition of silver into the polymer structure were evaluated microgravimetrically. The mass of the included metallic silver particles depends on the synthesis time and the initial concentration of silver ions in solution. The cyclic voltammograms (CVs) of PEDOT/Ag films in sodium nitrate solutions and sodium nitrate solutions with additions of chloride ions were studied. The cyclic voltammograms of PEDOT/Ag films in chloride-containing solutions showed the peaks of the oxidation of silver and reduction of the oxidation product, which were absent on the CVs of the starting PEDOT film.  相似文献   

15.
In this paper, three‐dimensionally ordered macroporous (3DOM) poly(3,4‐ethylenedioxythiophene) (PEDOT) films were electropolymerized from an ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([Bmim]PF6). The electrochromic performances of the 3DOM PEDOT films were studied. The 3DOM films exhibited high transmittance modulation (41.2 % at λ=580 nm), high ionic fast switching speeds (0.7 and 0.7 s for coloration and bleaching, respectively), and enhanced cycling stability relative to that exhibited by the dense PEDOT film. The relationship between the declining behavior of the transmittance modulation and the nanostructure of the film was investigated. A three‐period decay process was proposed to understand the declining behavior. The 3D interconnected macroporous nanostructure is beneficial for fast ion and electron transportation, high ion accessibility, and maintenance of structure integrity, which result in enhanced cycling stability and fast switching speeds.  相似文献   

16.
The electrochemical behavior of composite Pd-PEDOT films is studied. These films are obtained by chemical deposition of Pd particles in the polymeric matrix of PEDOT (poly-3,4-ethylenedioxythiophene). Characteristics of the films are determined by means of cyclic voltammetry, faradaic impedance, microgravimetry, and energy-dispersive x-ray fluorescence analysis. Impedance spectra of composite Pd-PEDOT films, compared to the original PEDOT film, reveal a new response at potentials of −0.3 and −0.4 V in the form of a distinct semicircle, which results from processes in the electrochemical sorption-desorption of hydrogen. Weight gain during the chemical deposition of palladium in the polymer structure is estimated by mircrogravimetry. It is shown that the mass of palladium loaded in the film depends on the time of synthesis and the initial concentration of palladium ions in solution. The size of the actual surface and the average radius of dispersed palladium particles in the film are also estimated.  相似文献   

17.
This paper describes a new strategy to obtain PEDOT/Au‐nanorods nanocomposites with different PEDOT: Au ratio. A polymeric ionic liquid (PIL) was used as stabilizer during the chemical synthesis of PEDOT dispersions. PEDOT/Au‐nanorods dispersions in organic media were obtained. Electrochemical characterization of PEDOT/Au‐nanorods nanocomposites revealed that the addition of Au nanorods modified the electroactivity of the conducting films by reducing the oxidation potential from +0.33 to +0.23 V (versus Ag/AgCl). Optical contrast (ΔT%) of the films decreased from 17% for neat PEDOT films to 8% for PEDOT/Au‐nanorods nanocomposites films (3:1 (v/v)) while switching times (from 1 to 4 sec) were similar to neat PEDOT. Conductivity of the films increased from 0.027 S/cm for neat PEDOT to 0.691 S/cm for PEDOT/Au‐nanorods nanocomposites. Nanoscale morphology and contact potential of PEDOT/Au‐nanorods nanocomposites were investigated in detail by Scanning Force Microscopy. Electrical measurements show a clear contact potential difference between the ITO substrate and the PEDOT/Au‐nanorods film. On the film, no contact potential inhomogeneity is observed indicating that the Au‐nanorods are uniformly dispersed in the film. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Hybrid (composite) electroactive films consisting of such an organic conducting polymer as poly(3,4-ethylenedioxythiophene), PEDOT, and such a polynuclear inorganic compound as amorphous tungsten oxide, WO3/H x WO3 were fabricated on carbon electrodes through electrodeposition by voltammetric potential in acid solution containing EDOT monomer and sodium tungstate. Electrostatic interactions between the negatively charged tungstic units (existing within WO3) and the oxidized positively charged conductive polymer (oxidized PEDOT) sites create a robust hybrid structure which cannot be considered as a simple mixture of the organic and inorganic components. It is apparent from scanning electron microscopy that hybrid structures are granular but fairly dense. Because PEDOT and mixed-valence tungsten oxides are electronically conducting, the resulting hybrid films are capable of fast propagation. The reversible and fast redox reactions of tungsten oxide component lie in the potential range where PEDOT matrix is conductive. Furthermore, the hybrid films exhibit good mediating capabilities towards electron transfers between model redox couples such as cationic iron(III,II) and anionic hexacyanoferrate(III,II). Since the films accumulate effectively charge and show high current densities at electrochemical interfaces, they could be of importance to electrocatalysis and to construction of redox capacitors.  相似文献   

19.
聚乙撑二氧噻吩阳极降解的研究   总被引:1,自引:0,他引:1  
佘平平  汪正浩 《化学学报》2006,64(10):997-1003
研究了聚乙撑二氧噻吩(PEDOT)膜在水溶液中的阳极降解过程. 研究发现PEDOT的阳极过程可以分为p掺杂区[电位范围-0.3~0.5 V (相对于饱和甘汞电极; vs. SCE)]、过渡区[电位范围0.6~1 V (vs. SCE)]、过氧化区[电位范围1.2~1.6 V (vs. SCE)]三个电位区域. 用电化学阻抗谱法、循环伏安法、红外光谱技术、膜电阻测量以及电子自旋共振技术分别研究了PEDOT膜在这三个电位区域的行为. 结果表明: PEDOT膜在这三个电位区域的性质有明显不同. 在p掺杂区PEDOT膜的官能团、共轭结构、导电性均保持, 即在这个电位区发生可逆的掺杂/脱掺杂反应, 膜几乎不降解. 在过渡区和过氧化区, PEDOT膜均发生了降解. 与传统的导电聚合物在高电位的阳极降解的过氧化过程不同, 我们认为膜在较高电位(过渡区)发生一个驰豫过程, 该过程使得膜的官能团改变, 但是膜的共轭结构和导电性均保持; 而在更高的电位区(过氧化区)膜的降解和一般意义的过氧化降解相同, 此时膜的官能团、共轭结构、导电性均发生不可逆的破坏.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号