首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Photoluminescence, capacitance-voltage and transmission electron microscopy studies have been carried out on structures containing a sheet of a self-assembled InAs quantum dots formed in GaAs matrices after the deposition of a 1.7 ML of InAs at 480°C. The use of n- and p-type GaAs matrices allows us to study separately electron and hole levels in the quantum dots by the capacitance-voltage technique. From analysis of photoluminescence and capacitance-voltage measurements it follows that the quantum dots have electron levels 80 meV below the bottom of the GaAs conduction band and two heavy-hole levels at 100 meV and 170 meV above the top of the GaAs valence band.  相似文献   

2.
Deep-level transient spectroscopy and photoluminescence studies have been carried out on structures containing self-assembled InAs quantum dots formed in GaAs matrices. The use of n- and p-type GaAs matrices allows us to study separately electron and hole levels in the quantum dots by the deep-level transient spectroscopy technique. From analysis of deep-level transient spectroscopy measurements it follows that the quantum dots have electron levels 130 meV below the bottom of the GaAs conduction band and heavy-hole levels at 90 meV above the top of the GaAs valence band. Combining with the photoluminescence results, the band structures of InAs and GaAs have been determined.  相似文献   

3.
A model describing the emission of photoexcited electrons and holes from an array of InAs quantum dots into the GaAs matrix is suggested. The analytical expression obtained for the emission efficiency takes into account the thermal emission of charge carriers into the GaAs matrix and two-dimensional states of the InAs wetting layer, tunneling and thermally activated tunneling escape, and electron transitions between the quantum-confinement levels in the conduction band of InAs. The temperature dependences of the photosensitivity in the regions of the ground-state and first excited-state optical transitions in InAs/GaAs quantum dots grown by gas-phase epitaxy are investigated experimentally. A number of quantum dot parameters are determined by fitting the results of a theoretical calculation to the experimental data. Good agreement between the theoretical and experimental results is obtained in this way.  相似文献   

4.
Atomic force microscopy (AFM) is typically used to measure the quantum dot shape and density formed by lattice mismatched epitaxial growth such as InAs on GaAs. However, AFM images are distorted when two dots are situated in juxtaposition with a distance less than the AFM tip width. Scanning electron Microscope (SEM) is much better in distinguishing the dot density but not the dot height. Through these measurements of the growth of InxGa1-xAs cap layer on InAs quantum dots, it was observed that the InGaAs layer neither covered the InAs quantum dots and wetting layer uniformly nor 100% phase separates into InAs and GaAs grown on InAs quantum dots and wetting layer, respectively.  相似文献   

5.
具有InAlAs浸润层的InGaAs量子点的制备和特性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
采用自组装方法生长了一种新型的InGaAs量子点/InAlAs浸润层结构.通过选取合适的In组分 ,使InAlAs浸润层的能级与GaAs势垒相当,从而使浸润层的量子阱特征消失.通过低温光致 发光(PL)谱的测试分析得到InGaAs量子点/InAlAs浸润层在样品中的确切位置.变温PL谱的 研究显示,具有这种结构的量子点发光峰的半高全宽随温度上升出现展宽,这明显区别于普 通InGaAs量子点半高全宽变窄的行为.这是因为采用了InAlAs浸润层后,不仅增强了对InGaA s量子点的限制作用,同时切断了载流子的 关键词: InGaAs量子点 InAlAs浸润层 PL谱  相似文献   

6.
研究了低温(15 K)条件下弱耦合GaAs/AlGaAs/InGaAs双势阱结构的纵向磁隧穿特性. 研究表明,器件在零偏压下处于共振状态. 通过分析不同偏压下的磁电导振荡曲线,可以得到双量子阱中的基态束缚能级随偏压的变化规律,从而可以确定隧穿电流峰对应的隧穿机制. 所得结果可为弱耦合双量子点器件的制备提供基础. 关键词: 双量子阱 隧穿结构 磁电导振荡  相似文献   

7.
We present studies on the electric transport in a lateral GaAs/AlGaAs quantum dot defined by a patterned single connected metallic front-gate. This gate design allows to easily couple a large number of quantum dots and therefore holds high potential in the design of new materials with tailor-made band structures based on quantum dot superlattices of controlled shape. Clear Coulomb diamond structures and well pronounced tunneling peaks observed in experiment indicate that single-electron control has been achieved. However, the dependence on electron density in the heterostructure embedding the dot, which is controlled by an additional back-gate, reveals that transport characteristics are strongly influenced supposedly by potential fluctuations in the dot and lead regions.  相似文献   

8.
We have used conductive scanning probe microscope (SPM) in high vacuum and operated at 173 K in order to investigate the electronic properties of self-organized InGaAs quantum dots (QDs) grown on GaAs (3 1 1)B and (0 0 1) substrates. Ordered InGaAs quantum dot arrays on GaAs (3 1 1)B surface were fabricated by atomic-H assisted molecular beam epitaxy (H-MBE), and Si SPM tips coated with Au which warrants electrical conductivity were used to measure simultaneously both the topographic and current images of QDs surface. From the current–voltage (IV) curves, unique and different plateau features were observed for QDs formed on GaAs (3 1 1)B and (0 0 1) substrates. The results suggested that a high degree of symmetry of InGaAs QDs on (3 1 1)B was responsible for the observed degeneracy of electronic states and artificial atom-like states. We demonstrate that this conductive SPM technique becomes a powerful tool in studies of single electron charging of individual dots.  相似文献   

9.
Combined scanning tunneling and atomic force microscopy (STM/AFM) of cross-sectional cleavages in a protective liquid medium (oil) is applied to study InGaAs/GaAs heterostructures with quantum wells and dots. It is shown that the quantum wells and dots can be visualized on cleavages in both AFM and STM modes and to measure the current-voltage characteristics of the contact between an AFM probe and the cleavage surface.  相似文献   

10.
田芃  黄黎蓉  费淑萍  余奕  潘彬  徐巍  黄德修 《物理学报》2010,59(8):5738-5742
利用金属有机化合物气相沉积设备生长了不同盖层结构的InAs/GaAs量子点,采用原子力显微镜和光致发光光谱仪对量子点的结构和光学性质进行了研究.量子点层之间的盖层由一个低温层和一个高温层组成.对不同材料结构的低温盖层的对比研究表明,In组分渐变的InGaAs低温盖层有利于改善量子点均匀性、减少结合岛数目、提高光致发光强度;当组分渐变InGaAs低温盖层厚度由6.8 nm增加到12 nm,发光波长从1256.0 nm红移到1314.4 nm.另外,还对不同材料结构的高温盖层进行了对比分析,发现高温盖层采用In组分渐变的InGaAs材料有利于光致发光谱强度的提高. 关键词: 半导体量子点 盖层 组分渐变  相似文献   

11.
We investigate the electron dynamics of p-type modulation doped and undoped InGaAs/GaAs quantum dots using up-conversion photoluminescence at low temperature and room temperature. The rise time of the p-doped sample is significantly shorter than that of the undoped at low temperature. With increasing to room temperature the undoped sample exhibits a decreased rise time whilst that of the doped sample does not change. A relaxation mechanism of electron-hole scattering is proposed in which the doped quantum dots exhibit an enhanced and temperature independent relaxation due to excess built-in holes in the valence band of the quantum dots. In contrast, the rise time of the undoped quantum dots decreases significantly at room temperature due to the large availability of holes in the ground state of the valence band. Furthermore, modulation p-doping results in a shorter lifetime due to the presence of excess defects.  相似文献   

12.
Exciton spin relaxation at low temperatures in InAlAs–InGaAs asymmetric double quantum dots embedded in AlGaAs layers has been investigated as a function of the barrier thickness by the time-resolved photoluminescence measurements. With decreasing the thickness of the AlGaAs layer between the dots, the spin relaxation time change from 3 ns to less than 500 ps. The reduction in the spin relaxation time was considered to originate from the spin-flip tunneling between the ground state in InAlAs dot and the excited states in InGaAs dot, and the resultant tunneling leads to the spin depolarization of the ground state in InGaAs dot.  相似文献   

13.
We present an atomic-scale analysis of the indium distribution of self-assembled (In,Ga)As quantum rings (QRs), which are formed from InAs quantum dots by capping with a thin layer of GaAs and subsequent annealing. We find that the size and shape of QRs as observed by cross-sectional scanning tunneling microscopy (X-STM) deviate substantially from the ring-shaped islands as observed by atomic force microscopy on the surface of uncapped QR structures. We show unambiguously that X-STM images the remaining quantum dot material whereas the AFM images the erupted quantum dot material. The remaining dot material shows an asymmetric indium-rich crater-like shape with a depression rather than an opening at the center and is responsible for the observed electronic properties of QR structures. These quantum craters have an indium concentration of about 55% and a diameter of about 20 nm, which is consistent with the observed electronic radius of QR structures. Based on the structural information from the X-STM measurements, we calculate the magnetization as a function of the applied magnetic field. We conclude that, although the real QR shape differs strongly from an idealized circular-symmetric open ring structure, Aharonov–Bohm-type oscillations in the magnetization can be expected.  相似文献   

14.
Quantum dot structures designed for multi-color infrared detection and high temperature (or room temperature) operation are demonstrated. A novel approach, tunneling quantum dot (T-QD), was successfully demonstrated with a detector that can be operated at room temperature due to the reduction of the dark current by blocking barriers incorporated into the structure. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color tunneling-quantum dot infrared photodetector (T-QDIP) with photoresponse peaks at 6 μm and 17 μm operating at room temperature will be discussed. Furthermore, the idea can be used to develop terahertz T-QD detectors operating at high temperatures. Successful results obtained for a T-QDIP designed for THz operations are presented. Another approach, bi-layer quantum dot, uses two layers of InAs quantum dots (QDs) with different sizes separated by a thin GaAs layer. The detector response was observed at three distinct wavelengths in short-, mid-, and far-infrared regions (5.6, 8.0, and 23.0 μm). Based on theoretical calculations, photoluminescence and infrared spectral measurements, the 5.6 and 23.0 μm peaks are connected to the states in smaller QDs in the structure. The narrow peaks emphasize the uniform size distribution of QDs grown by molecular beam epitaxy. These detectors can be employed in numerous applications such as environmental monitoring, spectroscopy, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.  相似文献   

15.
We study theoretically the magnetotunneling transport through quantum dots formed by thermal diffusion of charged manganese interstitials in the vicinity of a GaAs quantum well [Phys. Rev. Lett. 101 , 226807 (2008)]. In particular, we examine the lateral matrix elements between Landau subbands in the contact and Fock–Darwin‐like states of an individual dot at high magnetic fields. We explicitly demonstrate the effect of spatial deformation of the dot on the wave function's overlap. The comparison with measured data suggests a selection rule similar to angular momentum conservation for tunneling into perfect Fock–Darwin states. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
GaSb nanostructures in GaAs, grown by metalorganic chemical vapor deposition, were studied with cross-sectional scanning tunneling microscopy. Three different samples were examined, containing a thin quantum well, a quantum well near the critical thickness for dot formation, and finally self-organized quantum dots with base lengths of 5–8 nm and heights of about 2 nm. The dots are intermixed with a GaSb content between 60% and 100%. Also small 3D and 2D islands were observed, possibly representing quantum dots in an early growth stage and quantum dot precursors. All GaSb layers exhibit gaps, which are indications of an island-like growth mode during epitaxy.  相似文献   

17.
We have investigated magneto-optical properties of GaSb/GaAs self-assemble type II quantum dots by single dot spectroscopy in magnetic field. We have observed clear Zeeman splitting and diamagnetic shift of GaSb/GaAs quantum dots. The diamagnetic coefficient ranges from 5 to 30 μeV/T2. The large coefficient and their large distribution are attributed to the size inhomogeneity and electron localization outside the dot. The g-factor of GaSb/GaAs quantum dots is slightly larger than that of similar type I InGaAs/GaAs quantum dots. In addition, we find almost linear relationship between the diamagnetic coefficient and the g-factor. The linear increase of g-factor with diamagnetic coefficient is due to an increase of spin-orbit interaction with dot size.  相似文献   

18.
Based on the continuum elastic theory, this paper presents a finite element analysis to investigate the influences of elastic anisotropy and thickness of spacing layer on the strain field distribution and band edges (both conduction band and valence band) of the InAs/GaAs conical shaped quantum dots. To illustrate these effects, we give detailed comparisons with the circumstances of isolated and stacking quantum dot for both anisotropic and isotropic elastic characteristics. The results show that, in realistic materials design and theoretical predication performances of the optoelectronic devices, both the elastic anisotropy and thickness of the spacing layer of stacked quantum dot should be taken into consideration.  相似文献   

19.
 研究了退火条件和In组份对分子束外延生长的InGaAs量子点(分别 以GaAs或AlG aAs为基体)光学特性的影响。表明:量子点中In含量的增加将导致载流子的定域能增加和基态与激发态之间的能量间隔增大。采用垂直耦合的量子点及宽能带的AlGaAs基体可增 强材料的热稳定性。以AlGaAs为基体的InGaAs量子点,高温后退火工艺 (T= 830℃)可改善低温生长的AlGaAs层的质量,从而改善量子点激光器材料的质量。  相似文献   

20.
The spontaneous emission of far-infrared radiation (λ≅10–20 μm) from diode structures with vertically coupled InGaAs/AlGaAs quantum dots is observed. This emission is due both to transitions of holes and electrons between size-quantization levels in quantum dots and to transitions from the continuum to a level in a quantum dot. It is observed only when accompanied by lasing at short wavelengths (λ≅0.94 μm) and, like the short-wavelength emission, it exhibits a current threshold. The spontaneous emission of long-wavelength radiation is also observed in InGaAs/GaAs quantum-well laser structures. This radiation is approximately an order of magnitude weaker than that from quantum-dot structures, and it has no current threshold. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 4, 256–260 (25 February 1998)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号