首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
富勒烯 (C60 /C70 )与N ,N ,N′ ,N′ 四 (对甲苯基 ) 4,4′ 二胺 1,1′ 二苯硒醚 (TPDASe)间在激光光诱导条件下 ,发生了分子间的电子转移过程 .在可见 -近红外区 ( 60 0~ 12 0 0nm) ,观测到了TPDASe阳离子自由基、富勒烯 (C60 /C70 )激发三线态和阴离子自由基 ,在苯腈溶液中 ,观测瞬态谱测定了电子从TPDASe转移到富勒烯 (C60 /C70 )激发三线态的量子转化产率(ΦTet)和电子转移常数 (Ket) .  相似文献   

2.
富勒烯(C60/Z70)与N,N,N',N'-四-(对甲苯基)-4,4'-二胺-1,1'-二苯硒醚(TPDASe)间在激光光诱导条件下,发生了分子间的电子转移过程.在可见-近红外区(600~1200mm),观测到了TPDASe阳离子自由基、富勒烯(C60/C70)激发三线态和阴离子自由基,在苯腈溶液中,观测瞬态谱测定了电子从TPDASe转移到富勒烯(C60/C70)激发三线态的量子转化产率(ΦT et)和电子转移常数(Ket).  相似文献   

3.
曾和平 《化学学报》2002,60(9):1543-1547
用激光光解方法研究了富勒烯(C_(60)/C_(70))与三苯基胺(TPA)间的光诱 导电子转移过程。在近红外区,观测到TPA阴离子自由基,富勒烯(C_(60)/C_(70) )激发三线态和阴离子自由基。在苯腈溶液中,利用瞬态谱测定了电子从TPA转移 到富勒烯(C_(60)/C_(70))激发三线态的量子转化产率(Φ_(et))和电子转移常 数(k_(et))。  相似文献   

4.
C60富勒醇、C70富勒醇的激光光解研究   总被引:1,自引:0,他引:1  
在248 nm激光作用下,与通常富勒烯衍生物(如C60(C4H6O),C60(C3H7N),C60[C(COOEt)2]x)在溶液中光解常产生激发三重态不同,富勒烯水溶性衍生物C60(C70)富勒醇[C60(OH)n,C70(OH)m],能被248 nm激光单光子电离.以KI溶液为参照,在室温下(大约15℃)测出其水合电子的量子产额(Φe-)分别为0.08,0.11.通过激光光解与SO4ˉ的氧化,确定了C60富勒醇阳离子自由基或中性自由基的存在并且观察到C70富勒醇阳离子自由基的瞬态吸收峰.  相似文献   

5.
分别利用FtIR和DSC技术对由N,N,N',N'-四炔丙基4,4’-二氨基-二苯甲烷(TPDDM)与4,4’-联苯二苄叠氮(BAMBP)形成的一种新型三唑树脂的固化反应及其动力学进行了研究.TPDDM与BAMBP通过1,3-偶极环加成反应形成三唑五元环结构的聚合物,固化起始温度约为70℃,体系在较低温度下即可固化.反应体系的固化反应是一级反应,采用DSC法与FFIR法分别获得了表观聚合反应动力学参数,其结果具有一定的可比性.  相似文献   

6.
在常温、Ar气保护下研究了金属富勒烯与哌嗪(Piperazine)的反应, 并用硅胶柱分离了3种金属富勒烯衍生物. 用激光解析飞行时间质谱、紫外-可见-近红外光谱和傅里叶变换红外光谱等手段分析确定其结构分别为La@C82-C4N2H8, La@C82-C4N2H8-H8和La@C82-(C4N2H8)2-H6. 对比C60与哌嗪的反应结果发现, 与空富勒烯相比, 金属富勒烯反应活性更高, 产物加成数目更多.  相似文献   

7.
利用2—[4—(N—乙基—N—6—羟己基)氨基苯偶氮基]—3—氰基—5—甲酰基噻吩(1)和N—甲基甘氨酸产生的亚胺叶立德与富勒烯反应,合成了含富勒烯的偶氮噻吩化合物(2),2再与1,3,5-苯三甲酰氯进行取代反应生成了一类以苯为核心、偶氮噻吩为连接桥、三个富勒烯(C50)为电子受体端基的星状化合物3。制备了单层太阳能电池器件(ITO/化合物3/Al),其单色光光电转换效率(IPCE)约为2.5%。  相似文献   

8.
在分子水平研究新型人工光俘获材料对于太阳能电池的发展具有重要意义。本文采用TD-DFT方法研究了卟啉-富勒烯(P-C60)体系的光诱导电子转移过程。该过程由三个过程组成:(1)光激发过程,P-C60由基态激发至卟啉局域激发(LE)态;(2)电荷分离(CS)过程形成卟啉至富勒烯的电荷转移(CT)态;(3)电荷重组(CR)过程,CT态返回到基态。我们通过分析分子轨道指认了LE态和CT,并获得了这两个激发态的结构。采用广义Mulliken-Hush(GMH)方法计算体系电荷分离和电荷重组过程的态态间电子耦合,和实验测量的电子转移速率获得定性一致的结果。本工作为分析、预测光诱导电荷转移过程提供了有效的手段。  相似文献   

9.
孙雅泉  胡惟孝  袁庆 《有机化学》2003,23(5):483-487
间甲苯基异氰酸酯与3,6-二甲基-1,6-二氢-s-四嗪反应生成标题化合物 (C20H22N6O2,Mt=378.44).经X射线单晶结构分析表明,此晶体属正交晶系, P212121空间群,晶胞参数分别为:α=1.1602(2)nm,b=1.5921(3)nm,c=1. 3918(3)nm,V=1.9874(10)nm^3,Z=4,Dc=1.265g/cm^3,μ(MoKα)=0. 086mm^-1,F(000)=800,R和ωB分别是0.0619和0.1495.结果表明该化合物的两个 酰胺基接在s-四嗪环的1,4-位,而四嗪环呈船式构象,不具有同芳香性,分子中 存在氢键.  相似文献   

10.
多芳胺是良好的电子给体,富勒烯C60作为电子受体的光诱导分子内和分子间电荷转移现象[1,2]引起人们普遍关注,尤其是设计合成长寿命电荷分离态的富勒烯C60-多芳胺基类衍生物研究[3,4]是热点课题之一.由于聚吡咯/聚芳胺的氧化还原电位较低[5],我们设想包含吡咯/芳胺给体的富勒烯C60衍生物能延长电荷分离态的寿命.本文用1,3-偶极环加成反应[6]对富勒烯C60与多芳胺化合物的选择性加成反应进行了研究,在不同条件下得到了单加成产物和三加成产物,用FAB-MS,UV-vis,IR,1H NMR,13C NMR,HPLC等方法确定了其分子结构.并且利用半经验AM1量子化学方法在理论上研究了它们的优化构型(如图1)、电子结构,结果表明,富勒烯C60-多芳胺基类衍生物的前沿轨道主要由富勒烯C60部分决定,富勒烯C60母体与功能化基团三苯胺基之间存在较强的分子内电荷转移,这为富勒烯C60衍生物作为光电分子器件材料的应用提供了理论和实验依据.  相似文献   

11.
Fullerenes C60 and C70 have high electron affinity ( 2.6 - 2.8 ev ) and readily form anions on electronchemical reduction1, which were famous as electron acceptor in photo-excitation because of symmetrical shape, large size, and properties of its p - electron system2. After observation of molecular ferromagnetism3 in the tetrakis (dimethylamino ) ethylene salt of C60 as well as the occurrence of ultra-fast photoinduced electron transfer within the dimethyl aniline - C60 complex4, prompted us…  相似文献   

12.
Photoinduced electron transfer processes between fullerenes (C60 / C70) and N, N, N′, N′- tetra - ( p-methylphenyl ) - 4, 4′- diamino - 1, 1′- diphenyl ether ( TPDAE ) have been studied by nanosecond laser flash photolysis. Quantum yields and rate constants of electron transfer from TPDAE to excited triplet state of fullerenes (C60 / C70 ) in benzonitrile have been evaluated by observing the transient absorption bands in the near-IR region where the excited triplet state, radical anion of fullerenes ( C60 / C70 ) and radical cations of TPDAE appear.  相似文献   

13.
He‐Rng Zeng 《中国化学》2002,20(12):1546-1551
The photoinduced electron‐transfer reaction of N, N, N', N'‐tetra‐(p‐methylphenyl)‐4,4'‐diamino‐1,1'‐diphenyl ether (TPDAE) and fullerenes (C60/C70) by nanosecond laser flash photolysis occurred in benzonitrile. Transient absorption spectral measurements were carried out during 532 nm laser flash photolysis of a mixture of the fullerenes (C60/C70) and TPDAE. The electron transfer from the TPDAE to excited triplet state of the fullerenes (C60/C70) quantum yields and rate constants of electron transfer from TPDAE to excited triplet state of fullerenes (C60/C70) in benzonitrile have been evaluated by observing the transient absorption bands in the near‐IR region where the excited triplet state, radical anion of fullerenes (C60/C70) and radical cations of TPDAE are expected to appear.  相似文献   

14.
曾和平 《中国化学》2002,20(10):1025-1030
In search of new systems with a photoexcited redox pair which exhibits a strong and stable photoinduced absorption band to understand the photophyscial and photochemical properties of electron transfer between fullernes (C60/C70) and organic donor[N,N,N’,N’-tetra(p-methylphenyl)-4,4’-diamino-1,1’-diphenyl sulphide(TPDAS)],we studied characteristic absorption spectra in the near-IR region obtained from 532nm nanosecond laser flash photolysis of a mixture of the fullerenes (C60/C70) and TPDAS in polar solvents.When fullerenes (C60/C70)were photoexcithed,the rise of the radical anion of fullerenes (C60/C70)with the rapid decay of their excited triplet states were observed in benzonitrile.It can be deduced that the electron transfer reaction does take place from TPDAS to excithed triplet state of rullerens(C60/C70).The rate consants(ket)and quantum yiekls(φet) of this process have been also evaluated.  相似文献   

15.
Photoinduced electron-transfer processes in the systems of chlorophylls (Chl) (chlorophyll-a [Chl-a] and chlorophyll-b) and fullerenes (C60/C70) in both polar and non-polar solvents have been investigated with nanosecond laser photolysis technique, observing the transient spectra in the visible/near-IR regions. By the excitation of Chl in benzonitrile (BN) it has been proved that electron transfer takes place from the triplet excited states of Chl to the ground states of C60/C70. By the excitation of C70 in BN electron transfer takes place from the ground states of Chl to the triplet excited state of C70. In both Chl the rate constants and quantum yields for the electron-transfer processes are as high as those of zinc porphyrins and zinc phthalocyanines, indicating that the long alkyl chains of Chl play no role in retarding the electron transfer. The rate constant for the electron-mediating process from the radical anion of C70 to octylviologen dication yielding the octylviologen radical cation was evaluated. The back electron-transfer process from the viologen radical cation to the radical cation of Chl-a takes place in a longer time-scale, indicating that a photosensitized electron-transfer/electron-mediating cycle is achieved.  相似文献   

16.
In the presence of scandium triflate, an efficient photoinduced electron transfer from the triplet excited state of C(60) to p-chloranil occurs to produce C(60) radical cation which has a diagnostic NIR (near-infrared) absorption band at 980 nm, whereas no photoinduced electron transfer occurs from the triplet excited state of C(60) (3C(60)) to p-chloranil in the absence of scandium ion in benzonitrile. The electron-transfer rate obeys pseudo-first-order kinetics and the pseudo-first-order rate constant increases linearly with increasing p-chloranil concentration. The observed second-order rate constant of electron transfer (k(et)) increases linearly with increasing scandium ion concentration. In contrast to the case of the C(60)/p-chloranil/Sc(3+) system, the k(et) value for electron transfer from 3C(60) to p-benzoquinone increases with an increase in Sc(3+) concentration ([Sc(3+)]) to exhibit a first-order dependence on [Sc(3+)], changing to a second-order dependence at the high concentrations. Such a mixture of first-order and second-order dependence on [Sc(3+)] is also observed for a Sc(3+)-promoted electron transfer from CoTPP (TPP(2-) = tetraphenylporphyrin dianion) to p-benzoquinone. This is ascribed to formation of 1:1 and 1:2 complexes between the generated semiquinone radical anion and Sc(3+) at the low and high concentrations of Sc(3+), respectively. The transient absorption spectra of the radical cations of various fullerene derivatives were detected by laser flash photolysis of the fullerene/p-chloranil/Sc(3+) systems. The ESR spectra of the fullerene radical cations were also detected in frozen PhCN at 193 K under photoirradiation of the fullerene/p-chloranil/Sc(3+) systems. The Sc(3+)-promoted electron-transfer rate constants were determined for photoinduced electron transfer from the triplet excited states of C(60), C(70), and their derivatives to p-chloranil and the values are compared with the HOMO (highest occupied molecular orbital) levels of the fullerenes and their derivatives.  相似文献   

17.
Photoinduced intermolecular electron transfer process of fullerene (C60) with 9,9-bis(4-triphenylamino)fluorene (BTAF) and 9,9-dimethoxyethyl-2-diphenylaminofluorene (DAF) in toluene and benzonitrile has been investigated by nanosecond laser photolysis technique in the visible/near-IR regions. By the selective excitation of C60 using 532 laser light, it has been proved that the electron transfer takes place from the ground states BTAF and DAF to the triplet excited state of C60 ((3)C60*) by observing the radical anion of C60 and radical cation of BTAF and DAF. It was observed that the electron transfer of BTAF/(3)C60* is more efficient than DAF/(3)C60* reflecting the effect of amine-substitutents of the fluorene moiety on the efficiency of the electron transfer process. On addition of a viologen dication (OV(2+)), the electron of the anion radical of C60 mediates to OV(2+) yielding the OV(+). These results proved that the photosensitized electron-transfer/electron-mediating processes have been confirmed by the transient absorption spectral method.  相似文献   

18.
曾和平 《中国化学》2002,20(10):1007-1011
Photoinduced electron transfer(PET) processes between C60-C6H8SO and Tetrathiafulvalene(TTF) have been studied by nanosecond laser photolysis.Quantrm yiekds(φet) and rate constants of electron transfer(ket) from TTF to excited triplet state of[60] fullerene-containing cyclic sulphoxide in benzonitrile(BN) have been evaluated by observing the transient absorption bands in the NIR region.With the decay of excited triplet state of [60]fullerene-containing cyclic suplhoxide,the rise of radical anion of [60]fullerene-containing cyclic sulphoxinde is observed.  相似文献   

19.
Pulse-radiolytic studies were performed to determine the rate constants of intermolecular electron transfer (k(et)) from fullerenes (C(60), C(76), and C(78)) to a series of arene radical cations in dichloromethane. The one-electron oxidation potentials of the employed arenes-corresponding to the one-electron reduction potentials of arene pi-radical cations-were determined in dichloromethane to evaluate the driving forces of electron-transfer oxidation of fullerenes with arene pi-radical cations. The driving force dependence of log k(et) shows a pronounced decrease towards the highly exothermic region, representing the first definitive confirmation of the existence of the Marcus inverted region in a truly intermolecular electron transfer. Electron-transfer reduction of fullerenes with anthracene radical anion was also examined by laser flash photolysis in benzonitrile. The anthracene radical anion was produced by photoinduced electron transfer from 10,10'-dimethyl-9,9',10,10'-tetrahydro-9,9'-biacridine [(AcrH)(2)] to the singlet excited state of anthracene in benzonitrile. The rate constants of electron transfer (k(et)) from anthracene radical anion to C(60), C(70), and a C(60) derivative were determined from the decay of anthracene radical anion in the presence of various concentrations of the fullerene. Importantly, a significant decrease in the k(et) value was observed at large driving forces (1.50 eV) as compared to the diffusion-limited value seen at smaller driving forces (0.96 eV). In conclusion, our study presents clear evidence for the Marcus inverted region in both the electron-transfer reduction and oxidation of fullerenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号