首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用微流控技术实现了毫米量级多元丙烯酸酯(TMPTA)空心泡沫微球的制备。通过对微流体通道的设计与流场分析,获得了具有最佳流场均匀性分布的Y型微流控通道;利用软模板技术实现了Y型通道微流控芯片的组装,并开展了TMPTA泡沫微球的结构控制研究。研究结果表明:在模板尺寸一定的情况下,能够通过调节各相流速实现对微球壁厚和直径的有效控制;微球壳层密度可通过控制单体浓度来调节。通过优化控制条件,实现了密度20~100mg/cm3、直径大于3mm的空心泡沫微球的制备。  相似文献   

2.
仿生微流控技术将仿生结构设计应用到微流体装置中,具有很强的学科交叉性.本文提出了通过仿生手段突破微流控的技术瓶颈,从而提高微流控器件的抗污染性能,告别单一功能的微流控系统应用的局限性,实现微尺度下通道的智能化及动态环境变化下的高适应性等.本文提出了仿生微流控的概念,重点介绍了仿生微流控在器件抗污染、器件智能化、生物学和医药方面的最新研究进展,从仿生设计导入应用前景,并探讨了所涉及的物理问题和关键技术,以期为智能微流控芯片的设计开发和应用提供新思路,并为软物质的开发应用、多功能型智能化仿生器件的设计、制备及应用提供参考.  相似文献   

3.
受限于加工工艺,目前多数的声表面波微流控芯片,主要依靠普通的直通道调节细胞流速,从而控制微球在通道中的排列。但其形成的声场通常无法满足低能量、多功能的微流控需要。本文在普通声表面波微流控芯片的基础上,分别在频域和时域内构建声学微结构,并改变微结构阵列中铜柱间距,模拟仿真了微流控芯片输出端的电势,发现其输出端电压得到了明显的改善。当输入电信号频率在0-30MHz时,输出端电势增加约0.25V;在0-1000ns内,输出端电势增加0.015V左右;进而可以探索开发性价比更高的声波微流控芯片,针对病理检测等所存在的问题进行分析优化,提出新的细胞分离等技术。  相似文献   

4.
制备复合液滴的微尺度流动方法   总被引:1,自引:0,他引:1       下载免费PDF全文
微尺度流动能够一步到位地制备不同结构和功能、尺寸在微米量级的复合液滴.文章回顾了几种常见的基于复合液滴的微尺度流动方法,包括同轴电雾化、复合流动聚焦、微流控芯片、玻璃微毛细管等,并对各种技术的原理和进展进行了简要概括和分析.在这类流动中,不同种类的流体在一定的几何结构通道或外力场作用下平稳地拉伸成微细射流并最终破碎成复合液滴.在同轴电雾化和复合流动聚焦技术中,从毛细管流出的流体能够形成稳定的锥-射流结构,当外力作用改变时能够形成不同的流动模式.在微流控芯片和玻璃微毛细管技术中,流体被约束在固定管道内,不同管道构型下能够形成不同的流动形态.这些方法都采用纯物理机理,过程稳定、易于操作,制备的复合液滴粒径可控,单分散性好,微观结构可设计,在科学研究和工程实际中具有重要的应用价值.   相似文献   

5.
《光谱学与光谱分析》2007,27(7):1354-1354
首届沈阳国际微流控学学术论坛(The First Shenyang International Colloquium on Microfluidics)将于2007年10月21~24日在沈阳举行。本届会议由沈阳市政府、国家自然科学基金委员会主办,东北大学承办。方肇伦院士担任会议主席。会议主要议题包括:微流控和纳流控操控技术和理论  相似文献   

6.
很多生物大分子的特征振动模式和转动模式都位于太赫兹波段范围内,且太赫兹波的低电子能特性使其在实验过程中不会对待测样品造成破坏,所以可以采用太赫兹技术来鉴别生物样品。在许多研究中,生物样品都是溶液状态,溶液中水和其他分子之间的相互作用涉及很多生物现象,所以研究水的太赫兹特性就显得至关重要。众所周知,水分子是十分常见的极性分子,分子间氢键会与太赫兹波发生强烈的相互作用,从而使得水对太赫兹波有很强的吸收作用,导致利用太赫兹技术研究水溶液中生物样品的动态特性变得相当困难。为了解决这一难题,可以引入微流控技术。微流控技术以能精确操控微尺度流体而著称,其沟道深度可以达到50μm甚至更小。由于微流控技术减小了太赫兹波在流体中的传播距离,从而极大地减小了水对太赫兹波的吸收。本研究采用对太赫兹波具有高透过率的Zeonor 1420R材料制成了夹心式微流控芯片,芯片上微沟道的长度、宽度和深度分别为3 cm,4 mm和50 μm,太赫兹探测区的直径为3 mm。在制作微流控芯片时,利用厚度为50μm的强黏性双面胶代替传统夹心式微流控芯片中的聚二甲基硅氧烷(PDMS)薄膜,使微流控芯片在加热过程中不再有漏液现象。另外,设计了一个温控系统,它由加热片、温度传感器和温控仪构成,该温控系统能够以0.1 ℃的精度控制温度。利用该系统对微流控芯片中的去离子水进行加热,从20~90 ℃每隔5 ℃进行一次太赫兹透射测量,通过对实验数据的分析,发现随着温度升高,水的太赫兹透过率不断减小,说明水对太赫兹波的吸收随着温度的升高而变大。此结果为未来在不同环境温度下利用微流控技术研究液态样品的太赫兹吸收特性提供了先决条件,为未来太赫兹的应用与发展提供技术支持。  相似文献   

7.
碱性磷酸酶(ALP)作为一种被广泛使用的肿瘤标志物在肝癌诊断中具有重要的参考价值~([1])。然而,目前的检测方法通常得到的是所有肝癌细胞ALP活性的平均值。为了准确阐明细胞之间的异质性,需对单细胞进行分析。由于微流控液滴技术能够以高度可控的方式实现对单细胞的操纵和动态研究而得到越来越多的关注~([2])。我们将表面增强共振拉曼光谱技术与微流控液滴技术相结合用于对单个肝癌细胞进行原位、无损及精准的ALP活性检测。本研究以5-溴-4-氯-3-吲哚磷酸(BCIP)作为ALP底物,探测单个肝癌细胞ALP的活性。BCIP本体没有SERS活性,但ALP能够将BCIP催化氧化生成具有SERS活性的5,5’-二溴-4,4’-二氯-1H,1H-[2,2’]二氢亚吲哚基-3,3’-二酮(BCI)。根据该传感原理,我们能够在均匀液滴中测到ALP的最低浓度是1.0×10~(-15) mol·L~(-1)。  相似文献   

8.
胡杰  邓霄  桑胜波  李朋伟  李刚  张文栋 《物理学报》2014,63(20):207102-207102
利用微流控技术在微通道中制备了Zn O纳米线阵列,通过X射线衍射和扫描电子显微镜分别对纳米线的物相和表面形貌进行了表征.结果发现,合成的Zn O纳米线具有良好的c轴择优取向性和结晶度.同时,对Zn O纳米线阵列在丙酮、甲醇和乙醇气体中的气敏特性进行了研究,测试结果表明:在最佳工作温度(475?C)下,纳米线阵列对200 ppm(1 ppm=10-6)丙酮气体的最大灵敏度可达8.26,响应恢复时间分别为9和5 s;通过与传统水热法制备的Zn O纳米线的气敏性能相比较发现,基于微流控技术制备的纳米线阵列具有更高的灵敏度和更快的响应恢复速度.最后,从材料表面氧气分子得失电子的角度对Zn O纳米线气敏机理进行了讨论.  相似文献   

9.
金士杰  杨雅喃  田鑫  史思琪  林莉 《应用声学》2023,42(6):1123-1128
微流控芯片流道宽度处于微米尺度,存在特征辨识困难的问题。该文选取两种具有不同流道宽度和布局的典型微流控芯片,采用超声C扫描技术进行流道特征成像。利用标称中心频率15 MHz、10 MHz和5 MHz聚焦探头实施水浸C扫描检测,并分析中心频率、焦斑直径、扫描步进等关键参数对流道表征的影响。实验结果表明,对于流道宽度200μm的微流控芯片,当探头中心频率不低于10 MHz、扫描步进不超过0.1 mm时,成像分辨力和流道表征效果最佳,且流道中心间距测量误差不超过5%。同时,超声C扫描图像可以反映流道宽度变化,辨识发生堵塞的微流控芯片。  相似文献   

10.
微流控光学器件与系统的研究进展   总被引:1,自引:0,他引:1  
微流控技术作为微全分析系统的关键与核心,一直是MEMS领域中的一个研究重点。随着微流控技术水平的不断提高以及与其它学科的不断渗透与融合,近年来已经涌现出一批令人注目的研究热点,其中微流控光学器件就是其典型代表。微流控技术与光学器件的融合,为传统光学器件的微型化、阵列化、低成本化以及高精度控制提供了可能。叙述了一些基于微流控技术的可变焦光透镜、显示器件、光开关、以及可调光纤光栅等新型光学器件的近期研究成果和应用背景。  相似文献   

11.
荧光纳米材料因其独特的光学性能而被广泛用于传感、生物成像、离子检测等领域。微流控是一种能在微尺度上精确控制和操控流体的技术,近年来在有机合成、荧光材料制备、细胞检测、药物筛选等领域展现出重要的应用价值。本文以荧光纳米材料的制备为切入点,综述了微流控在该领域的研究进展。首先,根据反应器特征结构阐述了芯片微反应器、管式微反应器和离心式微反应器的特点及原理;进一步地,归纳整理了不同类型荧光纳米材料制备过程的典型例子,包括半导体纳米颗粒、碳点、钙钛矿纳米颗粒、稀土纳米材料、金属及氧化物复合纳米颗粒;最后,立足研究现状指出了该领域的挑战及研究方向。  相似文献   

12.
基于棉涤线的毛细作用,构建成“Y”型微流控分析通道,自行研制了一种可调控试样流速的微流控分析通道装置,实现了待测液和显色剂同时进样,研究建立了一种“Y”型棉涤线微流控分析通道分析测定新方法。进行了分光光光度法与Scan-Adobe Photoshop软件处理两种检测方法的比较,结果表明光度法检出限低;Scan-Adobe Photoshop软件处理法操作简捷,分析速度快,样品用量少。应用于亚硝酸根的分析测定,两种检测方法的线性范围和检出限分别为1.0~70 μmol·L-1,0.66 μmol·L-1(光度法);50~450和45.10 μmol·L-1(Scan-Adobe Photoshop软件处理法)。回收率在96.7%~104.0%之间。该微流控通道分析方法成本低廉,分析速度快,对土壤和水样中亚硝酸根进行分析测定,结果满意。  相似文献   

13.
微流控芯片以其对微量样品的精确操控能力而引起特别关注,表面增强拉曼光谱(SERS)作为一种超灵敏的光谱检测技术近年来在痕量检测上应用广泛。微流控芯片与SERS相结合的系统可对微量生物样品进行无损、快速、高灵敏度且高通量的检测分析,在生物医学领域有巨大的应用潜力,是当前的研究热点之一。本文介绍了微流控SERS系统近年的发展情况,包括微流控芯片的制作加工和流体操控,以及微流控芯片中SERS基底的集成;并重点介绍了近年来SERS微流控芯片系统在生物医学上的应用,如生物分子的检测、细胞分析、药物监测和筛选、疾病诊断,以及在环境和食品健康安全方面的检测应用。  相似文献   

14.
郭威  吴坚  王春艳  陈涛 《发光学报》2018,39(11):1633-1638
银纳米离子的SERS技术和SEF技术的信号检测灵敏度非常高,可以用在微流控芯片的定量分析中。为了提高微流控芯片光学检测技术的检测精度,提出一种在微通道中添加银纳米粒子来增强SYBR GreenⅠ拉曼和荧光信号的方法,并对该方法的原理和增强效果进行了研究。首先,利用准分子激光器在PMMA基板上直写刻蚀出宽200 μm、深68 μm的微通道,接着将制备的银前体溶液加入微通道,通过加热制备出表面增强拉曼(SERS)和表面增强荧光(SEF)基板,接下来对添加银纳米粒子前后的拉曼和荧光信号分别进行对比,进一步研究了微通道中不同浓度银纳米粒子对SYBR GREEN I的拉曼和荧光信号增强效果。添加银纳米粒子后,表面增强拉曼(SERS)实验的增强因子为3.5×103,添加银纳米粒子的样品的荧光信号强度与不含银纳米粒子样品的荧光信号强度相比,约增加了1倍。结果表明,在微通道中检测SYBR Green I时通过增加银纳米粒子显著地增强了拉曼和荧光信号,这种方法可以用在以SYBR GreenⅠ做染料的微流控芯片检测技术中。  相似文献   

15.
TN29 2006032498微流控光学器件与系统的研究进展=Reviewof optical de-vices and systems based on microfluidics[刊,中]/吴建刚(清华大学微电子学研究所.北京(100084)) ,岳瑞峰…∥光学技术.—2006 ,32(1) .—71-74微流控技术与光学器件的融合,为传统光学器件的微型化、阵列化、低成本化以及高精度控制提供了可能。叙述了一些基于微流控技术的可变焦光透镜、显示器件、光开关以及可调光纤光栅等新型光学器件的近期研究成果和应用背景。图7参4(严寒)TN29 2006032499基于光纤环形镜的偏振无关的掺镧锆钛酸铅电光开关=Polarization indep…  相似文献   

16.
流体在微流通道中形成剪切流场(低雷诺数).不同于宏观体系,由于剪切力和表面张力的竞争作用,产生的液滴在微尺度下的微流通道中形成特殊的排列现象---周期性类似“晶格”排列现象.设计了新型流动聚焦型微流控芯片,分析研究在微流体系中液滴周期性图案化排列和转变机理性,液滴排列模式受两方面因素影响:水油两相的流速比值和微通道尺寸.当微通道宽度为250或300 μm时,液滴形成单层分散,双层和单层挤压排列.当微通道宽度为350 μm 时,液滴会形成单层分散到三层排列到双层挤压最后到单层挤压排列.当出口通道宽度增加到400 μm时,甚至出现了液滴四层排列的现象.同时研究了各个液滴排列模式的“转变点”.  相似文献   

17.
黏弹性流体广泛存在于自然界中,如人体中的血液等。实现黏弹性流体中不同尺寸微颗粒的高效分离对于生命科学和临床医学等领域有着重要的意义。本文基于对黏弹性流体中的微颗粒先富集再分离的思想,首先通过渐缩截面微通道,改变弹性升力的方向,并增强微颗粒在微通道中的受力,实现不同微颗粒的高效富集。而后,利用不同粒径微颗粒在层流状态下的运动特性差异,进一步实现对不同尺寸微颗粒的高效分离。实验结果表明,在维森伯格数Wi为17.5至34.9的范围内,聚乙烯吡咯烷酮(PVP)黏弹性流体中10 μm与4 μm两种微颗粒可实现完全分离。此外,本文还研究了不同流动参数和通道几何结构对黏弹性流体中颗粒分离的影响。与其他用于黏弹性流体中微颗粒分离的微流控技术相比,本文提出的颗粒分离方法具有分离精度和效率高、通道长度短等优点。基于此方法的微流控芯片技术在生物医学等领域有着巨大的应用潜力。  相似文献   

18.
微流控技术     
在今年美国物理学会在德克萨斯奥斯汀召开的“MarchMeeting”上 ,微流控技术是一个热门话题 .微流控技术主要是研究一些中介流体 (即生物组织中处于溶液中的细胞、蛋白质、染色体等 )以模式芯片为平台 ,在电压、热能以及蠕动压差的趋动下在微通道中的流动性能 .在本次会议的报告中最出色的有三个工作 .一个是美国加州理工学院Hansen教授的工作 ,他们研制出了具有最大集成程度的芯片 ,即在一块芯片上有 10 0 0 2 5 0pL并带有控制开关的小空腔 ,能对流体的流动与混合起调节与控制作用 .同时他们还完成了能精确测量反应物剂量的装置 ,其目的…  相似文献   

19.
 在过去的20年里,随着微纳米先进制造水平的提高,微流控技术作为微电机系统(microelectromechanical systems或MEMS)的一个重要分支,也得到了前所未有的快速发展。  相似文献   

20.
针对微流控芯片通道三维形貌的可视化测量需求,搭建了一套反射式离轴双波长像面数字全息显微测量系统。首先,利用分辨率靶和标准样片对系统的横向、纵向分辨率和放大倍数进行标定实验,结果表明双波长全息显微系统在横向宽度及纵向深度测量中具有较好的准确性和可行性。然后,利用该系统分别对由PDMS材料制成的直通道、圆形小室结构微流控芯片以及硅基底微流控芯片通道进行三维形貌检测,并得到定量结果:直通道结构深度为48.6μm,宽度为75.8μm;圆形小室微通道深度为48.5μm,宽度为76.6μm;硅基底微流控芯片测量得到通道深度为61.6μm。上述结果与白光干涉仪的测量结果具有良好的一致性,说明双波长全息显微系统具有较高的可靠性和准确性,可为微流控芯片微通道检测提供新的成像检测方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号