首页 | 本学科首页   官方微博 | 高级检索  
     检索      

声学微结构的微流控声场的改进与优化*
引用本文:尉浪浪,韩建宁,杨鹏,赵欣洒.声学微结构的微流控声场的改进与优化*[J].应用声学,2022,41(6):973-982.
作者姓名:尉浪浪  韩建宁  杨鹏  赵欣洒
作者单位:中北大学信息与通信工程学院,中北大学信息与通信工程学院,西喆电子有限公司,中北大学信息与通信工程学院
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)基于声学超透镜的亚波长分辨率光声显微成像关键技术(61671414)
摘    要:受限于加工工艺,目前多数的声表面波微流控芯片,主要依靠普通的直通道调节细胞流速,从而控制微球在通道中的排列。但其形成的声场通常无法满足低能量、多功能的微流控需要。本文在普通声表面波微流控芯片的基础上,分别在频域和时域内构建声学微结构,并改变微结构阵列中铜柱间距,模拟仿真了微流控芯片输出端的电势,发现其输出端电压得到了明显的改善。当输入电信号频率在0-30MHz时,输出端电势增加约0.25V;在0-1000ns内,输出端电势增加0.015V左右;进而可以探索开发性价比更高的声波微流控芯片,针对病理检测等所存在的问题进行分析优化,提出新的细胞分离等技术。

关 键 词:声学微结构  微流控芯片  声表面波  有限元仿真
收稿时间:2021/9/10 0:00:00
修稿时间:2022/10/8 0:00:00

Improvement and optimization of microfluidic sound field based on acoustic microstructure
Yu Langlang,Han Jianning,YANG Peng and ZHAO Xinsa.Improvement and optimization of microfluidic sound field based on acoustic microstructure[J].Applied Acoustics,2022,41(6):973-982.
Authors:Yu Langlang  Han Jianning  YANG Peng and ZHAO Xinsa
Institution:School of Information and Communication Engineering, North University of China,School of Information and Communication Engineering, North University of China,Xizhe Electronics Co., Ltd.,School of Information and Communication Engineering, North University of China
Abstract:Most of the current SAW microfluidic chips rely on the normal straight-through channel to regulate the cell flow rate and thus control the arrangement of microspheres in the channel.However, the sound field formed by it usually cannot meet the needs of low-energy and multi-functional microfluidics.In this paper, we simulated the potential at the output of the microfluidic chip by constructing acoustic microstructures in the frequency domain and time domain based on the ordinary SAW microfluidic chip and changing the spacing of copper columns in the microstructure array, and found that the voltage at the output of the microfluidic chip was significantly improved.When the input electrical signal frequency is in 0-30MHz, the potential at the output end increases by about 0.25V; in 0-1000ns, the potential at the output end increases by about 0.015V; in turn, the development of a more cost-effective acoustic microfluidic chip can be explored to analyze and optimize the problems that exist for pathology detection, etc., and to propose new techniques for cell separation, etc.
Keywords:Acoustic microstructure  Microfluidic chips  Vocal surface wave  Finite element simulation
点击此处可从《应用声学》浏览原始摘要信息
点击此处可从《应用声学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号