首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨晓雷 《力学学报》2021,53(12):3169-3178
为实现碳达峰、碳中和“3060”目标, 风能将在我国能源体系发挥重要作用. 风力机尾迹是影响风电性能和度电成本的关键因素, 需在风力机布置和控制设计中充分考虑. 本文首先介绍风力机尾迹的数值模拟方法, 包括解析模型、低阶模型、大涡模拟和来流湍流生成方法. 解析模型和低阶模型可快速计算风力机尾迹, 但依赖于模型参数, 且不能或不能准确预测尾迹湍流特性. 结合风力机参数化模型的大涡模拟可准确预测尾迹蜿蜒等湍流特征, 是流动机理研究的有力工具, 可为发展快速预测模型提供数据和理论支撑. 接着, 本文介绍了叶尖涡、中心涡和尾迹蜿蜒并讨论其产生机理. 对于湍流来流, 叶尖涡主要存在于近尾迹. 蜿蜒是远尾迹的主要特征, 影响下游风力机的来流特征. 尾迹蜿蜒的产生有两种机制: 来流大尺度涡和剪切层失稳. 数值和观测结果显示两种机制共同存在. 机舱和中心涡对尾迹蜿蜒有重要影响. 采用叶片和机舱的致动面模型可准确预测尾迹蜿蜒. 研究显示不同风力机尾迹间的湍流特征存在相似性, 为发展尾迹湍流的快速预测模型提供了理论依据. 当前研究多关注平坦地形上的风力机尾迹, 复杂地形和海洋环境下的大气湍流和风力机尾迹的机理复杂, 现有工程模型无法准确预测, 有待深入研究.   相似文献   

2.
An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force-moment sensor unit, a high-resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the tip-speed-ratio of the wind turbine model on the dynamic wind loads and wake flow characteristics were quantified in the terms of the variations of the aerodynamic thrust and bending moment coefficients of the wind turbine model, the evolution of the helical tip vortices and the unsteady vortices shedding from the blade roots and turbine nacelle, the deceleration of the incoming airflows after passing the rotation disk of the turbine blades, the TKE and Reynolds stress distributions in the near wake of the wind turbine model. The detailed flow field measurements were correlated with the dynamic wind load measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and turbulent vortex flows in the wakes of wind turbines for the optimal design of the wind turbines operating in atmospheric boundary layer winds.  相似文献   

3.
We examined experimentally the effects of incom-ing surface wind on the turbine wake and the wake interfer-ence among upstream and downstream wind turbines sited in atmospheric boundary layer (ABL) winds. The experi-ment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incom-ing surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow char-acteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Varia-tions of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes charac-teristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake inter-ference for the turbines sited in onshore wind farms.  相似文献   

4.
5.
We present the coupling of a vortex particle-mesh method with immersed lifting lines for the Large Eddy Simulation of wind turbine wakes. The method relies on the Lagrangian discretization of the Navier–Stokes equations in vorticity-velocity formulation. Advection is handled by the particles while the mesh allows the evaluation of the differential operators and the use of fast Poisson solvers. We use a Fourier-based fast Poisson solver which simultaneously allows unbounded directions and inlet/outlet boundaries. The method also allows the feeding of a turbulent incoming flow. We apply this methodology to the study of large scale aerodynamics and wake behavior of tandem wind turbines. We analyze the generators performance, unsteady power, loads and aerodynamics they are subjected to. The average flow field of the wakes is also computed and turbulence statistics are extracted. In particular, we investigate the influence of the type of turbulent inflow used—precomputed or synthetic—, and study wake meandering.  相似文献   

6.
The magnitude and temporal variations of wind speed considerably influence aerodynamic and structural responses of MW-sized horizontal axis wind turbines. Thus, this paper investigates the variations in airloads and blade behavior of a wind turbine blade resulting from operations in sheared and turbulent flow conditions. First, in order to validate the present methods, comparisons of aerodynamic results were made among the blade element momentum method, free-wake method, and numerical results from the previous studies. Then, the validated methods were applied to a national renewable energy laboratory 5 MW reference wind turbine model for fluid–structure interaction analyses. From the numerical simulations, it can be clearly seen that unfavorable airloads and blade deformations occur due to the sheared and turbulent flow conditions. In addition, it is clear that wake impacts are not as substantial at those of high wind speeds; however, the effects obviously affect the aerodynamic and structural behaviors of the blade at lower wind speeds. Therefore, it is concluded that the numerical results markedly indicate the demand for accurate assessment of wake dynamics for accurate estimations of the aerodynamic and structural responses for sheared and turbulent flow environments.  相似文献   

7.
Experiments were performed to study surface pressure on a cubic building underlying conical vortices, which are known to cause severe structural damage and failure. The focus is on the effects of turbulence in the incident flow. Three turbulent boundary layers were created in a boundary layer wind tunnel. A wall-mounted cube, i.e. a cube situated on the horizontal ground floor surface of the wind-tunnel test section, was used as an experimental model. The cube was subjected to the incidence flow at 40°. Steady and unsteady pressure measurements were performed on the cube surface. The analysis suggests that conical vortices developed above the top surface of the wall-mounted cube. A larger mean suction was observed on the top cube surface in the less turbulent boundary layer. With an increase in turbulence in the incoming flow, the strong suction zones decreased in size. The fluctuating pressure coefficient profiles retained their shape when the turbulence in the upstream flow of the cube increased. The fluctuating pressure coefficient was observed to be larger in more turbulent flows. The pressure fluctuations were larger on the cube surface underlying outer boundaries of the conical vortex. The fluctuating pressure coefficient under the conical vortex was three to four times larger than in the weak suction zone on the central area of the top cube surface. Close to the leading cube corner, the pressure spectra were dominated by a single low frequency peak. As the conical vortex developed, this primary peak weakened and a secondary peak emerged at a higher reduced frequency. There is a general trend of shifting the pressure spectra towards higher reduced frequencies when the turbulence in the undisturbed incident flow increases.  相似文献   

8.
Wind turbines operate in the surface layer of the atmospheric boundary layer, where they are subjected to strong wind shear and relatively high turbulence levels. These incoming boundary layer flow characteristics are expected to affect the structure of wind turbine wakes. The near-wake region is characterized by a complex coupled vortex system (including helicoidal tip vortices), unsteadiness and strong turbulence heterogeneity. Limited information about the spatial distribution of turbulence in the near wake, the vortex behavior and their influence on the downwind development of the far wake hinders our capability to predict wind turbine power production and fatigue loads in wind farms. This calls for a better understanding of the spatial distribution of the 3D flow and coherent turbulence structures in the near wake. Systematic wind-tunnel experiments were designed and carried out to characterize the structure of the near-wake flow downwind of a model wind turbine placed in a neutral boundary layer flow. A horizontal-axis, three-blade wind turbine model, with a rotor diameter of 13 cm and the hub height at 10.5 cm, occupied the lowest one-third of the boundary layer. High-resolution particle image velocimetry (PIV) was used to measure velocities in multiple vertical stream-wise planes (xz) and vertical span-wise planes (yz). In particular, we identified localized regions of strong vorticity and swirling strength, which are the signature of helicoidal tip vortices. These vortices are most pronounced at the top-tip level and persist up to a distance of two to three rotor diameters downwind. The measurements also reveal strong flow rotation and a highly non-axisymmetric distribution of the mean flow and turbulence structure in the near wake. The results provide new insight into the physical mechanisms that govern the development of the near wake of a wind turbine immersed in a neutral boundary layer. They also serve as important data for the development and validation of numerical models.  相似文献   

9.
In a large wind farm,the wakes of upstream and downstream wind turbines can interfere with each other,affecting the overall power output of the wind farm.To further improve the numerical accuracy of the turbine wake dynamics under atmosphere turbulence,this work proposes some improvements to the actuator line-large-eddy simulation(AL-LES)method.Based on the dynamic k-equation large-eddy simulation(LES),this method uses a precursor method to generate atmospheric inflow turbulence,models the tower and nacelle wakes,and improves the body force projection method based on an anisotropic Gaussian distribution function.For these three improvements,three wind tunnel experiments are used to validate the numerical accuracy of this method.The results show that the numerical results calculated in the far-wake region can reflect the characteristics of typical onshore and offshore wind conditions compared with the experimental results.After modeling the tower and nacelle wakes,the wake velocity distribution is consistent with the experimental result.The radial migration velocity of the tip vortex calculated by the improved blade body force distribution model is 0.32 m/s,which is about 6%different from the experimental value and improves the prediction accuracy of the tip vortex radial movement.The method proposed in this paper is very helpful for wind turbine wake dynamic analysis and wind farm power prediction.  相似文献   

10.
应用平面二维悬沙数学模型对方柱尾流区的泥沙输运及床面调整进行了数值模拟,并对重要物理参数做了分析说明。数值计算采用时间分裂一全隐式有限差分格式,流场的计算基于沿水深平均的RANS方程。通过系统的数值模拟,揭示了不同来流情况下,方柱尾流区的流态变化,及与之相应的床面变化规律,并对不同流态下的泥沙运动作了分析。计算结果表明在方柱尾流区,不同的流场流态对尾流区的床面调整有明显影响。流场较弱的情况下,尾流区中湍动强度相应较弱,此时悬浮泥沙由于流速减小而普遍落淤,床面应力的减小也致使床面冲刷量减小。随着流场强度的逐渐增大,尾流区中湍动强度相应增强,床面应力增大,同时湍流的强烈交换作用增强了对泥沙的输运作用,床面变化不再是简单的淤积状态,部分区域出现了冲刷。  相似文献   

11.
The model studies were designed to obtain information concerning wind loads on a tall building by placing the model in a turbulent shear flow simulating expected atmospheric boundary-layer winds. Since current design codes are inadequate for predicting all possible motions of tall buildings, it is important that better knowledge of mean and fluctuating loadings and their distributions becomes available. Experiments were conducted to determine the mean and fluctuating forces and twisting moments at several levels over the surface of a model. By determining the effects at several levels simultaneously, it was possible to correlate forces and moments at five levels with one common level. A single model was tested at varying orientations. Tests were also conducted with an identical model placed upstream so that its wake influenced the flow around the instrumented model. Results are presented in terms of distributions of force and moment coefficients and correlations at different levels. The spectral character of the force and moment components is illustrated for one case. Paper was presented at 1977 SESA Spring Meeting held in Dallas, TX on May 15–20.  相似文献   

12.
Direct numerical simulations of separating flow along a section at midspan of a low-pressure V103 compressor cascade with periodically incoming wakes were performed. By varying the strength of the wake, its influence on both boundary layer separation and bypass transition were examined. Due to the presence of small-scale three-dimensional fluctuations in the wakes, the flow along the pressure surface undergoes bypass transition. Only in the weak-wake case, the boundary layer reaches a nearly-separated state between impinging wakes. In all simulations, the flow along the suction surface was found to separate. In the simulation with the strong wakes, separation is intermittently suppressed as the periodically passing wakes managed to trigger turbulent spots upstream of the location of separation. As these turbulent spots convect downstream, they locally suppress separation.  相似文献   

13.
《力学快报》2021,11(5):100296
The concentration distribution of urban air pollutants is closely related to people's health. As an important utilization form of urban wind power, rooftop wind turbines have been widely used in cities. The wake effect of the rooftop wind turbines will change the flow behind buildings and then affect the pollutant dispersion. To this end, the pollutant dispersion behind the building is studied via the computational fluid dynamics method. The actuator disk model and idealized cube are adopted to model the wind turbine and the building, respectively. The study shows that the rooftop wind turbine can reduce the pollutant mass fraction near the ground and the pedestrian level. Due to the wake effect of the rooftop wind turbine, the turbulent fluctuation behind the building is weakened, and the spanwise pollutant dispersion is suppressed. Besides, the rooftop wind turbine weakens the downwash movement of the building, which enhances the vertical pollutant dispersion.  相似文献   

14.
The mean wake of a three-bladed horizontal axis tidal stream turbine operating at maximum power coefficient has been investigated experimentally in a wide flume with width 11 times the depth, providing minimal restriction to transverse wake development and behaviour of large-scale horizontal turbulence structures. This is an important first stage for understanding wake interaction in turbine arrays and hence large-scale power generation. The rotor diameter has a typical value of 60% of the depth and the thrust coefficient is representative of a full-scale turbine. The shear layers originating from the rotor tip circumference show classic linear expansion downstream, with the rate of a plane shear layer vertically and 1.5 times that horizontally. These shear layers merge by around 2.5 diameters downstream forming a self-similar two-dimensional wake beyond eight diameters downstream with a virtual origin at two diameters downstream of the rotor plane. The spreading rate is somewhat less than that for solid bodies. The detailed velocity measurements made in the near wake show rotation and vorticity similar to that measured previously for wind and marine turbines although with asymmetry associated with bed and surface proximity. The longitudinal circulation in a transverse plane is conserved at about 1% of the swept circulation from the blade tip within two diameters downstream, the extent of detailed measurement. Turbines are usually designed using blade element momentum theory in which velocities at the rotor plane are characterised by axial and tangential induction factors and it is now possible to see how this idealisation relates to actual velocities. The axial induction factor corresponds to velocity deficits at 0.4–0.8 radii from the rotor axis across the near wake while the tangential induction factor at the rotor plane corresponds to velocities at 0.4–0.6 radii between 1–2 diameters downstream, indicating some general correspondence. For the two-dimensional self-similar far wake the two parameters defining the centreline velocity deficit and the transverse velocity profiles are likely to be insensitive to Reynolds number in turbulent conditions.  相似文献   

15.
Determination of the aerodynamic configuration of wake is the key to analysis and evaluation of the rotor aerodynamic characteristics of a horizontal-axis wind turbine.According to the aerodynamic configuration, the real magnitude and direction of the onflow velocity at the rotor blade can be determined, and subsequently, the aerodynamic force on the rotor can be determined. The commonly employed wake aerodynamic models are of the cylindrical form instead of the actual expanding one. This is because the influence of the radial component of the induced velocity on the wake configuration is neglected. Therefore, this model should be called a "linear model". Using this model means that the induced velocities at the rotor blades and aerodynamic loads on them would be inexact. An approximately accurate approach is proposed in this paper to determine the so-called "nonlinear" wake aerodynamic configuration by means of the potential theory,where the influence of all three coordinate components of the induced velocity on wake aerodynamic configuration is taken into account to obtain a kind of expanding wake that approximately looks like an actual one. First, the rotor aerodynamic model composed of axial(central), bound, and trailing vortexes is established with the help of the finite aspect wing theory. Then, the Biot-Savart formula for the potential flow theory is used to derive a set of integral equations to evaluate the three components of the induced velocity at any point within the wake. The numerical solution to the integral equations is found,and the loci of all elementary trailing vortex filaments behind the rotor are determined thereafter. Finally, to formulate an actual wind turbine rotor, using the nonlinear wake model, the induced velocity everywhere in the wake, especially that at the rotor blade,is obtained in the case of various tip speed ratios and compared with the wake boundary in a neutral atmospheric boundary layer. Hereby, some useful and referential conclusions are offered for the aerodynamic computation and design of the rotor of the horizontal-axis wind turbine.  相似文献   

16.
This is a report on the comparison between measurement data and predictions presented at the “Blind Test 3” Workshop organized jointly by Nowitech and Norcowe in Bergen, 10 and 11 December, 2013. A number of researchers were invited to predict the performances and the wake development behind two model wind turbines that have been extensively tested at the Department of Energy and Process Engineering, NTNU. The turbines were arranged in-line, but slightly offset so that the wake of the upstream turbine only interacted with roughly half the area swept by the second rotor. This is a common event in most wind parks and produces flow fields that are both complicated and harmful for the downstream turbine. As expected it turned out to be a difficult flow to predict.Contributions were received from five different groups using a range of methods, from fully resolved Reynolds averaged Computational Fluid Dynamics (CFD) models to Large Eddy Simulations (LES). The range of results was large but the overall trend is that the current methods predict the power generation as well as the thrust force reasonably well. But there is a large uncertainty in the prediction of the turbulence field in the wake. Hence, the LES method consistently performed better than the others.  相似文献   

17.
《力学快报》2021,11(5):100292
The vorticity dynamics and its relationship to dissipation in the wake of a utility-scale wind turbine are investigated through large-eddy simulation. The vorticity dynamics is assessed through the enstrophy, which is related to the turbulent dissipation. The averaged enstrophy and turbulent dissipation are shown to be quantitatively similar in the wake. Using temporal phase averaging, the vorticity fluctuations are decomposed into coherent and random fluctuations with respect to the frequency of the tip vortices. The enstrophy in the tip vortices is dominated by coherent fluctuations, while the coherent fluctuations of root vortices are immediately saturated by the random vorticity fluctuations of the unstable hub vortex. The coherent strain rate has significant differences compared to the coherent enstrophy within one diameter downwind of blade tip, but the random enstrophy and strain rate are relatively similar. Differences in coherent enstrophy and strain rate decrease further from the rotor.  相似文献   

18.
An experimental investigation is performed to assess the characteristics of the fluid–structure interactions and microburst-induced wind loads acting on a wind turbine model sited in microburst-liked winds. The experiment study was conducted with a scaled wind turbine model placed in microburst-like winds generated by using an impinging-jet-typed microburst simulator. In addition to quantifying complex flow features of microburst-like winds, the resultant wind loads acting on the turbine model were measured by using a high-sensitive force–moment sensor as the turbine model was mounted at different radial locations and with different orientation angles with respect to the oncoming microburst-like winds. The measurement results reveal clearly that, the microburst-induced wind loads acting on the turbine model were distinctly different from those in a conventional atmospheric boundary layer (ABL) wind. With the scales of the wind turbine model and the microburst-like wind used in the present study, the dynamic wind loadings acting on the turbine model were found to be significantly higher (i.e., up to 4 times higher for the mean loads, and up to 10 times higher for the fluctuation amplitudes) than those with the same turbine model sited in ABL winds. Both the mean values and fluctuation amplitudes of the microburst-induced wind loads were found to vary significantly with the changes of the mounted site of the turbine model, the operating status (i.e., with the turbine blades stationary or freely rotating), and the orientation angle of the turbine model with respect to the oncoming microburst-like wind. The dynamic wind load measurements were correlated to the flow characteristics of the microburst-like winds to elucidate underlying physics. The findings of the present study are helpful to gain further insight into the potential damage caused by the violent microbursts to wind turbines to ensure safer and more efficient operation of the wind turbines in thunderstorm-prone areas.  相似文献   

19.
Meander of a fin trailing vortex and the origin of its turbulence   总被引:2,自引:0,他引:2  
The low-frequency meander of a trailing vortex shed from a tapered fin installed on a wind tunnel wall has been studied using stereoscopic particle image velocimetry in the near-wake at Mach 0.8. Distributions of the instantaneous vortex position reveal that the meander amplitude increases with downstream distance and decreases with vortex strength, indicating meander is induced external to the vortex. Trends with downstream distance suggest meander begins on the fin surface, prior to vortex shedding. Mean vortex properties are unaltered when considered in the meandering reference frame, apparently because turbulent fluctuations in the vortex shape and strength dominate positional variations. Conversely, a large peak of artificial turbulent kinetic energy is found centered in the vortex core, which almost entirely disappears when corrected for meander, though some turbulence remains near the core radius. Turbulence originating at the wind tunnel wall was shown to contribute to vortex meander by energizing the incoming boundary layer using low-profile vortex generators and observing a substantial increase in the meander amplitude, while greater turbulent kinetic energy penetrates the vortex core. An explanatory mechanism has been hypothesized, in which the vortex initially forms at the apex of the swept leading edge of the fin where it is exposed to turbulent fluctuations within the wind tunnel wall boundary layer, introducing an instability into the incipient vortex core.  相似文献   

20.
利用CFD软件对麦克马斯特大学垂直轴风力机进行不同叶尖速比下的数值模拟,计算结果与风洞试验数据吻合良好。近场尾流中,与单叶片的风力机模拟结果比较,上游叶片产生并向下游延伸的旋涡影响下游运行轨道上叶片的升阻力特性,不仅使叶片扭矩输出峰值降低,而且峰值产生的时间延迟。对垂直轴风力机叶片叶梢进行修改,模拟结果显示,叶片扭矩输出峰值不变,但是谷值有所降低,修改后风力机沿风向推力幅值降低明显;远场尾流中,采用风速轮廓线原理,以瑞典的法尔肯贝里市200kW垂直轴风力机为原型,按照真实的空间排布进行数值模拟。模拟结果显示,上游风力机上下两端处产生较为集中的远场尾流,影响下游风力机叶片下半段的气动性能,下游风力机功率输出降低明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号