首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force-moment sensor unit, a high-resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the tip-speed-ratio of the wind turbine model on the dynamic wind loads and wake flow characteristics were quantified in the terms of the variations of the aerodynamic thrust and bending moment coefficients of the wind turbine model, the evolution of the helical tip vortices and the unsteady vortices shedding from the blade roots and turbine nacelle, the deceleration of the incoming airflows after passing the rotation disk of the turbine blades, the TKE and Reynolds stress distributions in the near wake of the wind turbine model. The detailed flow field measurements were correlated with the dynamic wind load measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and turbulent vortex flows in the wakes of wind turbines for the optimal design of the wind turbines operating in atmospheric boundary layer winds.  相似文献   

2.
杨晓雷 《力学学报》2021,53(12):3169-3178
为实现碳达峰、碳中和“3060”目标, 风能将在我国能源体系发挥重要作用. 风力机尾迹是影响风电性能和度电成本的关键因素, 需在风力机布置和控制设计中充分考虑. 本文首先介绍风力机尾迹的数值模拟方法, 包括解析模型、低阶模型、大涡模拟和来流湍流生成方法. 解析模型和低阶模型可快速计算风力机尾迹, 但依赖于模型参数, 且不能或不能准确预测尾迹湍流特性. 结合风力机参数化模型的大涡模拟可准确预测尾迹蜿蜒等湍流特征, 是流动机理研究的有力工具, 可为发展快速预测模型提供数据和理论支撑. 接着, 本文介绍了叶尖涡、中心涡和尾迹蜿蜒并讨论其产生机理. 对于湍流来流, 叶尖涡主要存在于近尾迹. 蜿蜒是远尾迹的主要特征, 影响下游风力机的来流特征. 尾迹蜿蜒的产生有两种机制: 来流大尺度涡和剪切层失稳. 数值和观测结果显示两种机制共同存在. 机舱和中心涡对尾迹蜿蜒有重要影响. 采用叶片和机舱的致动面模型可准确预测尾迹蜿蜒. 研究显示不同风力机尾迹间的湍流特征存在相似性, 为发展尾迹湍流的快速预测模型提供了理论依据. 当前研究多关注平坦地形上的风力机尾迹, 复杂地形和海洋环境下的大气湍流和风力机尾迹的机理复杂, 现有工程模型无法准确预测, 有待深入研究.   相似文献   

3.
Wall-resolved large eddy simulations are employed to investigate the behaviour of wake vortices and single vortices in ground proximity at a variety of wind conditions. The six considered strengths of wind, ranging between 0.5 and 4 times the initial wake vortex descent speed, w0, include practically and theoretically significant wind speeds. A crosswind of 0.5 w0 may lead to windward stall posing a potential hazard to subsequently landing aircraft, whereas theoretical considerations predict that at 4 w0 the rebound of the luff vortex is completely suppressed. The same range of wind speeds is also used to investigate the effects of headwind and diagonal wind in order to discriminate between effects of environmental turbulence increasing with wind speed and the direction of the wind shear. The study has been complemented by a number of single vortex computations in order to differentiate between effects related to the mutual interaction of the vortex pair and the individual vortices with the turbulent boundary layer flow. It is shown that vortex ascent, descent, rebound and decay characteristics are controlled by (i) the interaction of the vortices with secondary vorticity detaching from the ground, (ii) the redistribution of vorticity of the boundary layer which is altering the path of the primary vortices by mutual velocity induction, and (iii) the interaction of the vortices with the environmental turbulence.  相似文献   

4.
Experiments were conducted in water and wind tunnels on spheres in the Reynolds number range 6 × 103 to 6.5 × 105 to study the effect of natural ventilation on the boundary layer separation and near-wake vortex shedding characteristics. In the subcritical range of Re (<2 × 105), ventilation caused a marginal downstream shift in the location of laminar boundary layer separation; there was only a small change in the vortex shedding frequency. In the supercritical range (Re > 4 × 105), ventilation caused a downstream shift in the mean locations of boundary layer separation and reattachment; these lines showed significant axisymmetry in the presence of venting. No distinct vortex shedding frequency was found. Instead, a dramatic reduction occurred in the wake unsteadiness at all frequencies. The reduction of wake unsteadiness is consistent with the reduction in total drag already reported. Based on the present results and those reported earlier, the effects of natural ventilation on the flow past a sphere can be categorized in two broad regimes, viz., weak and strong interaction regimes. In the weak interaction regime (subcritical Re), the broad features of the basic sphere are largely unaltered despite the large addition of mass in the near wake. Strong interaction is promoted by the closer proximity of the inner and outer shear layers at supercritical Re. This results in a modified and steady near-wake flow, characterized by reduced unsteadiness and small drag. Received: 8 September 1998 / Accepted: 1 January 2000  相似文献   

5.
A detailed experimental study is performed on the separated flow structures around a low aspect-ratio circular cylinder (pin-fin) in a practical configuration of liquid cooling channel. Distinctive features of the present arrangement are the confinement of the cylinder at both ends, water flow at low Reynolds numbers (Re = 800, 1800, 2800), very high core flow turbulence and undeveloped boundary layers at the position of the obstacle. The horseshoe vortex system at the junctions between the cylinder and the confining walls and the near wake region behind the obstacle are deeply investigated by means of Particle Image Velocimetry (PIV). Upstream of the cylinder, the horseshoe vortex system turns out to be perturbed by vorticity bursts from the incoming boundary layers, leading to aperiodical vortex oscillations at Re = 800 or to break-away and secondary vorticity eruptions at the higher Reynolds numbers. The flow structures in the near wake show a complex three-dimensional behaviour associated with a peculiar mechanism of spanwise mass transport. High levels of free-stream turbulence trigger an early instabilization of the shear layers and strong Bloor–Gerrard vortices are observed even at Re = 800. Coalescence of these vortices and intense spanwise flow inhibit the alternate primary vortex shedding for time periods whose length and frequency increase as the Reynolds number is reduced. The inhibition of alternate vortex shedding for long time periods is finally related to the very large wake characteristic lengths and to the low velocity fluctuations observed especially at the lowest Reynolds number.  相似文献   

6.
The wake of a surface-mounted finite-height circular cylinder and the associated vortex patterns are strongly dependent on the cylinder aspect ratio and the thickness of the boundary layer on the ground plane relative to the dimensions of the cylinder. Above a critical aspect ratio, the mean wake is characterized by streamwise tip vortex structures and Kármán vortex shedding from the sides of the cylinder. Below a critical aspect ratio, a unique mean wake structure is observed. Recent experimental studies in the literature that used phase-averaged techniques, as well as recent numerical simulations, have led to an improved physical understanding of the near-wake vortex flow patterns. However, the flow above the free end of the finite circular cylinder, and its relationship to the near wake, has not been systematically studied. The effects of aspect ratio and boundary layer thickness on the free-end flow field are also not completely understood, nor has the influence of Reynolds number on the free-end flow field been fully explored. Common features associated with the free end include separation from the leading edge, a mean recirculation zone containing a prominent cross-stream arch (or mushroom) vortex, and reattachment onto the free-surface. Other flow features that remain to be clarified include a separation bubble near the leading edge, one or two cross-stream vortices within this separation bubble, the origins of the streamwise tip or trailing vortices, and various critical points in the near-surface flow topology. This paper reviews the current understanding of the flow above the free end of a surface-mounted finite-height circular cylinder, with a focus on models of the flow field, surface oil flow visualization studies, pressure and heat flux distributions on the free-end surface, measurements of the local velocity field, and numerical simulations, found in the literature.  相似文献   

7.
利用改进型延迟分离涡模拟方法对缩尺比例1:30的高速列车简化模型的绕流流场进行数值计算,主要针对近尾流区的涡旋结构展开具体讨论. 通过不同的涡旋识别方法,发现在尾涡结构中,高涡量的强涡旋主要聚集于尾车附近,而涡量较低但处于相对稳定状态的涡旋分布在大部分尾流空间中. 对此,主要基于最新提出的涡旋定义及其物理意义认为,由于边界层在尾部发生的流动分离,剪切变形以及高涡量的扩散对强涡旋的形成发挥着重要的作用,而涡旋会被较强的剪切旋转拉伸,使得局部复杂的流动表现出突出的湍流特性;另一方面,尽管涡强度明显下降,但是在强剪切应变迅速衰减的情况下,流向涡核中的涡旋涡量是主要的,此时,在较接近地面的情况下,流体微团以涡核为中心的旋转运动使得涡旋与地面之间的相互作用成为主导的流动机制. 虽然涡强度会相对缓慢地衰减,但是从湍流能量产生的角度,该机制对涡旋的自维持发挥重要的作用,从而使尾涡结构能够相对稳定地存在于尾流流动中.   相似文献   

8.
9.
《力学快报》2021,11(5):100292
The vorticity dynamics and its relationship to dissipation in the wake of a utility-scale wind turbine are investigated through large-eddy simulation. The vorticity dynamics is assessed through the enstrophy, which is related to the turbulent dissipation. The averaged enstrophy and turbulent dissipation are shown to be quantitatively similar in the wake. Using temporal phase averaging, the vorticity fluctuations are decomposed into coherent and random fluctuations with respect to the frequency of the tip vortices. The enstrophy in the tip vortices is dominated by coherent fluctuations, while the coherent fluctuations of root vortices are immediately saturated by the random vorticity fluctuations of the unstable hub vortex. The coherent strain rate has significant differences compared to the coherent enstrophy within one diameter downwind of blade tip, but the random enstrophy and strain rate are relatively similar. Differences in coherent enstrophy and strain rate decrease further from the rotor.  相似文献   

10.
The flow characteristics of the propeller wake behind a container ship model with a rotating propeller were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases and ensemble-averaged to investigate the flow structure in the near-wake region. The mean velocity fields in longitudinal planes show that a velocity deficit is formed in the regions near the blade tips and hub. As the flow develops in the downstream direction, the trailing vortices formed behind the propeller hub move upward slightly due to the presence of the hull wake and free surface. Interaction between the bilge vortices and the incoming flow around the hull causes the flow structure to be asymmetric. Contour plots of the vorticity give information on the radial distribution of the loading on the blades. The radial velocity profiles fluctuate to a greater extent under the heavy (J=0.59) and light loading (J=0.88) conditions than under the design loading condition (J=0.72). The turbulence intensity has large values around the tip and trailing vortices. As the wake develops in the downstream direction, the strength of the vorticity diminishes and the turbulence intensity increases due to turbulent diffusion and active mixing between the tip vortices and the adjacent wake flow.  相似文献   

11.
This study revealed the three-dimensional instantaneous topologies of the large-scale turbulence structures in the separated flow on the suction surface of wind turbine’s blade during stall delay. These structures are the major contributors to the first two POD (proper orthogonal decomposition) modes. The two kinds of instantaneous flow structures as major contributors to the first POD mode are: (1) extended regions of downwash flow with an upstream upward flow beside it and a compact vortex pair closer to the blade’s leading edge; (2) a large-scale clockwise vortex with strong induced flows. The two kinds of flow structures contributing significantly to the second POD mode are: (1) large counter-rotating vortices inducing strong upward velocities and a series of small vortices; (2) strong downwash flow coming from the leading-edge shear layer with a large and strong vortex on the left side and small vortices upstream. The statistical impacts of these large-scale and energetic structures on the turbulence have also been studied. It was observed that when these turbulence structures were removed from the flow, the peak values of some statistics were significantly reduced.  相似文献   

12.
一种风力机气动计算的全自由涡尾迹模型   总被引:1,自引:0,他引:1  
采用全自由方式建立风力机尾流场的涡尾迹模型,引入“虚拟周期”的概念,并发展一种自适应松弛因子方法,从而改善了自由尾迹迭代的稳定性,提高了迭代收敛速度。利用建立的自由涡尾迹模型,计算了风力机叶片的尾流场结构、气动性能及叶片载荷,并与实验结果进行了对比分析。结果表明,尖速比越大,自适应松弛因子方法对缩小模型计算时间越有效;全自由涡尾迹模型能准确给出风力机尾流场的结构,包括尾迹的扩张以及叶尖涡和叶根涡的产生、发展和耗散的过程,风轮扭矩与实验数据吻合;叶片载荷分布的计算结果在低风速下与实验值基本一致,但是在大风速下差别较大,说明需要一个准确的失速模型。  相似文献   

13.
A stereoscopic PIV (Particle Image Velocimetry) technique was used to measure the three-dimensional flow structure of the turbulent wake behind a marine propeller with five blades. The out-of-plane velocity component was determined using two CCD cameras with an angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases, and ensemble averaged in order to find the spatial evolution of the propeller wake in the region from the trailing edge up to one propeller diameter (D) downstream. The influence of propeller loading conditions on the wake structure was also investigated by measuring the velocity fields at three advance ratios (J=0.59, 0.72 and 0.88). The phase-averaged velocity fields revealed that a viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contracted in the near-wake region. The out-of-plane velocity component and strain rate had large values at the locations of the tip and trailing vortices. As the flow moved downstream, the turbulence intensity, the strength of the tip vortices, and the magnitude of the out-of-plane velocity component at trailing vortices all decreased due to effects such as viscous dissipation, turbulence diffusion, and blade-to-blade interaction.  相似文献   

14.
The near-wake behind a circular cylinder undergoing rotational oscillatory motion with a relatively high forcing frequency has been investigated experimentally. Experiments were carried out varying the ratio of the forcing frequency ff to the natural vortex shedding frequency fn in the range of 0.0 (stationary) to 1.6 at an oscillation amplitude of θA=30° and Reynolds number of Re=4.14×103. Depending on the frequency ratio (FR=ff /fn), the near-wake flow could be divided into three regimes—non-lock-on (FR=0.4), transition (FR=0.8, 1.6) and lock-on (FR=1.0) regimes—with markedly different flow structures. When the frequency ratio was less than 1.0 (FR⩽1.0), the rotational oscillatory motion of the cylinder decreased the length of the vortex formation region and enhanced the mutual interaction between large-scale vortices across the wake centerline. The entrainment of ambient fluid seemed to play an important role in controlling the near-wake flow and shear-layer instability. In addition, strong vortex motion was observed throughout the near-wake region. The flow characteristics changed markedly beyond the lock-on flow regime (FR=1.0) due to the high frequency forcing. At FR=1.6, the high frequency forcing decreased the size of the large-scale vortices by suppressing the lateral extent of the wake. In addition, the interactions between the vortices shed from both sides of the cylinder were not so strong at this forcing frequency. As a consequence, the flow entrainment and momentum transfer into the wake center region were reduced. The turbulent kinetic energy was large in the region near the edge of the recirculation region, where the vortices shed from both sides of the cylinder cross the wake centerline for all frequency ratios except for the case of FR=1.6. The temporally resolved quantitative flow information extracted in the present work is useful for understanding the effects of open-loop active flow control on the near-wake flow structure.  相似文献   

15.
Measurements were made in the stern boundary layers and near wakes of an elliptic cylinder and a slender ship model. Turbulence intensities, Reynolds stresses, kinematic eddy viscosities and mixing lengths are presented. For the elliptic cylinder, furthermore, auto-correlation and power spectrum are obtained. It is shown that the separation from the cylinder increases the turbulence intensities, and the Kármán vortices enhance the turbulence power at the vortex frequency. All distributions of Reynolds stresses in the thick boundary layer and wake of the ship model show a secondary low peak at about half the thickness.  相似文献   

16.
Flow control study of a NACA 0012 airfoil with a Gurney flap was carried out in a wind tunnel, where it was demonstrated that a dielectric-barrier-discharge (DBD) plasma actuator attached to the flap could increase the lift further, but with a small drag penalty. Time-resolved PIV measurements of the near-wake region indicated that the plasma forcing shifted the wake downwards, reducing its recirculation length. Analysis of wake vortex dynamics suggested that the plasma actuator initially amplified the lower wake shear layer by adding momentum along the downstream surface of the Gurney flap. This enhanced mutual entrainment between the upper and lower wake vortices, leading to an increase in lift on the airfoil.  相似文献   

17.
The vortical structures in the rear separation and wake region produced by a micro-ramp that immersed in a supersonic turbulent boundary layer are investigated. The small scale separation close to the trailing edge was revealed and this confirms the previous experimental observation. Between the reverse region and surrounding fast moving flow, a three-dimensional shear layer was formed, and vortices are generated. By using vortex line method, the spiral points were illustrated as the cross-sections of the Ω-shaped vortices that follow the shape of the separation. The vortical structure was analogous to that in the wake region, where similar Ω-shaped vortex which follows the deficit region caused by the micro-ramp can be observed. Finally, the revealed flow topology was conceived new and beneficial to the studying of wall bounded turbulence which involves similar vortical structures but in a smaller scale, compared with the vortical pattern in the current micro-ramp wake.  相似文献   

18.
Experiments were performed to study surface pressure on a cubic building underlying conical vortices, which are known to cause severe structural damage and failure. The focus is on the effects of turbulence in the incident flow. Three turbulent boundary layers were created in a boundary layer wind tunnel. A wall-mounted cube, i.e. a cube situated on the horizontal ground floor surface of the wind-tunnel test section, was used as an experimental model. The cube was subjected to the incidence flow at 40°. Steady and unsteady pressure measurements were performed on the cube surface. The analysis suggests that conical vortices developed above the top surface of the wall-mounted cube. A larger mean suction was observed on the top cube surface in the less turbulent boundary layer. With an increase in turbulence in the incoming flow, the strong suction zones decreased in size. The fluctuating pressure coefficient profiles retained their shape when the turbulence in the upstream flow of the cube increased. The fluctuating pressure coefficient was observed to be larger in more turbulent flows. The pressure fluctuations were larger on the cube surface underlying outer boundaries of the conical vortex. The fluctuating pressure coefficient under the conical vortex was three to four times larger than in the weak suction zone on the central area of the top cube surface. Close to the leading cube corner, the pressure spectra were dominated by a single low frequency peak. As the conical vortex developed, this primary peak weakened and a secondary peak emerged at a higher reduced frequency. There is a general trend of shifting the pressure spectra towards higher reduced frequencies when the turbulence in the undisturbed incident flow increases.  相似文献   

19.
Determination of the aerodynamic configuration of wake is the key to analysis and evaluation of the rotor aerodynamic characteristics of a horizontal-axis wind turbine.According to the aerodynamic configuration, the real magnitude and direction of the onflow velocity at the rotor blade can be determined, and subsequently, the aerodynamic force on the rotor can be determined. The commonly employed wake aerodynamic models are of the cylindrical form instead of the actual expanding one. This is because the influence of the radial component of the induced velocity on the wake configuration is neglected. Therefore, this model should be called a "linear model". Using this model means that the induced velocities at the rotor blades and aerodynamic loads on them would be inexact. An approximately accurate approach is proposed in this paper to determine the so-called "nonlinear" wake aerodynamic configuration by means of the potential theory,where the influence of all three coordinate components of the induced velocity on wake aerodynamic configuration is taken into account to obtain a kind of expanding wake that approximately looks like an actual one. First, the rotor aerodynamic model composed of axial(central), bound, and trailing vortexes is established with the help of the finite aspect wing theory. Then, the Biot-Savart formula for the potential flow theory is used to derive a set of integral equations to evaluate the three components of the induced velocity at any point within the wake. The numerical solution to the integral equations is found,and the loci of all elementary trailing vortex filaments behind the rotor are determined thereafter. Finally, to formulate an actual wind turbine rotor, using the nonlinear wake model, the induced velocity everywhere in the wake, especially that at the rotor blade,is obtained in the case of various tip speed ratios and compared with the wake boundary in a neutral atmospheric boundary layer. Hereby, some useful and referential conclusions are offered for the aerodynamic computation and design of the rotor of the horizontal-axis wind turbine.  相似文献   

20.
The dual-jet flow generated by a plane wall jet and a parallel offset jet at an offset ratio of d/w = 1.0 has been investigated using Particle Image Velocimetry (PIV). The particle images are captured, processed, and subsequently used to characterize the flow in terms of the 2D velocity and vorticity distributions. Statistical characteristics of the flow are obtained through ensemble averaging of 360 instantaneous velocity fields. Also presented is a time series of instantaneous flow fields to illustrate the dynamic interaction between the two jets. Results reveal that the near field of the flow is characterized by a periodic large-scale Karman-like vortex shedding similar to what would be expected in the wake of a bluff body. The existence of the Karman-like vortices results in periodic interactions between the two jets; in addition, these vortices produce noticeable impact on the jet outer layers, i.e., the free shear layer of the offset jet and the wall boundary layer of the wall jet. A schematic of vortex/shear layer interaction is proposed to illustrate the flow pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号