首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
朱翀  王同光  钟伟 《力学与实践》2013,35(5):17-22,90
广义致动盘方法是通过引入体积力代替叶片的致动盘技术与三维Navier-Stokes 方程相结合来获得风力机周围流场信息的一种方法. 该方法避免了花费大量网格与计算资源去求解风力机叶片的附面层,从而可以把更多的网格与计算资源用于风力机尾流流场的模拟,非常适合用于风力机尾流流场的研究. 以NH1500风力机为计算模型,将常规CFD (computational fluid dynamics) 方法与广义致动盘方法计算所得的叶片载荷分布进行比较,以验证广义致动盘方法的可行性. 然后使用广义致动盘方法对风场中串列风力机进行数值模拟,研究串列风力机之间间距变化时,上游风力机产生的尾流对下游风力机的干扰影响.  相似文献   

2.
一种风力机气动计算的全自由涡尾迹模型   总被引:1,自引:0,他引:1  
采用全自由方式建立风力机尾流场的涡尾迹模型,引入“虚拟周期”的概念,并发展一种自适应松弛因子方法,从而改善了自由尾迹迭代的稳定性,提高了迭代收敛速度。利用建立的自由涡尾迹模型,计算了风力机叶片的尾流场结构、气动性能及叶片载荷,并与实验结果进行了对比分析。结果表明,尖速比越大,自适应松弛因子方法对缩小模型计算时间越有效;全自由涡尾迹模型能准确给出风力机尾流场的结构,包括尾迹的扩张以及叶尖涡和叶根涡的产生、发展和耗散的过程,风轮扭矩与实验数据吻合;叶片载荷分布的计算结果在低风速下与实验值基本一致,但是在大风速下差别较大,说明需要一个准确的失速模型。  相似文献   

3.
考虑S型与H型垂直轴风力机的特点,设计了一种新型升阻混合型垂直轴风力机,采用CFD法计算其启动与气动性能。结果表明,原始H型垂直轴风力机数值结果与试验值在各工况下吻合良好;新型升阻混合型垂直轴风力机不同方位角下的启动力矩均大于原始H型风力机,最小及最大值分别提升232%和83.3%;S型风轮输出功率随叶片重叠比增加而减小,完全重叠时输出功率基本为0;新型升阻混合型垂直轴风力机最大风能利用率为0.298,具有更复杂的流场特性。  相似文献   

4.
考虑S型与H型垂直轴风力机的特点,设计了一种新型升阻混合型垂直轴风力机,采用CFD法计算其启动与气动性能。结果表明,原始H型垂直轴风力机数值结果与试验值在各工况下吻合良好;新型升阻混合型垂直轴风力机不同方位角下的启动力矩均大于原始H型风力机,最小及最大值分别提升232%和83.3%;S型风轮输出功率随叶片重叠比增加而减小,完全重叠时输出功率基本为0;新型升阻混合型垂直轴风力机最大风能利用率为0.298,具有更复杂的流场特性。  相似文献   

5.
设计了一种斜出口零质量射流激励器并将其应用于垂直轴风力机。对施加零质量射流激励器的直线翼垂直轴风力机进行了数值研究。为适应垂直轴风力机运行工况,提出了一种冲程长度随方位角变化的激励器控制策略,验证其减小激励能耗及改善流场结构的特点;分析了射流孔数量及冲程长度对控制叶片流动分离及提升风力机气动性能的影响规律,并在最佳控制参数下对风力机流场结构进行了分析。结果表明:当激励器布置于叶片后部,最大射流吹气系数为0.0506时,采用该种激励器控制策略下的双射流孔风力机,风能利用系数相比未施加流动控制、定常吹气、定冲程长度最大分别提升21.31%、3.98%、0.06%,且射流孔数越多,提升效果越差。该种流动控制技术可抑制大涡的形成及发展,改善叶片周围流场结构。  相似文献   

6.
风力发电机的空气动力学性能是决定风力机安全与效率的最重要因素之一。但由于影响风力机气动性能的参数众多,更加高效精确地模拟风力机气动特性一直是风力机的重要发展方向。本文提出了基于浸入边界法的风力机建模,网格离散,以及数值模拟的统一性框架。利用同伦变形来生成光滑的叶片模型,并且使用仿射变换来处理叶片的渐缩与扭转问题。首先,针对二维翼型的升阻力,检验了算法的数值精度。表明此方法对于阻力的模拟具有非常严格的一阶精度,进而提出采用理查森外推法来精确高效修正升阻力模拟结果。同时,模拟研究了拱曲度以及厚度对二维翼型升阻力的影响。随后,模拟研究了单风力机(包含塔架)在不同尖速比下的功率系数,并对塔架与叶片间的相互气动作用进行了初步分析。最后,模拟研究了双风力机在风场中不同前后间隔距离下的气动干涉问题。本文主要意义在于验证建模,离散,与数值模拟的一体化框架的有效可行性,进而为后续研究(给定约束下风力机自动优化选型)提供坚实基础。  相似文献   

7.
杨晓雷 《力学学报》2021,53(12):3169-3178
为实现碳达峰、碳中和“3060”目标, 风能将在我国能源体系发挥重要作用. 风力机尾迹是影响风电性能和度电成本的关键因素, 需在风力机布置和控制设计中充分考虑. 本文首先介绍风力机尾迹的数值模拟方法, 包括解析模型、低阶模型、大涡模拟和来流湍流生成方法. 解析模型和低阶模型可快速计算风力机尾迹, 但依赖于模型参数, 且不能或不能准确预测尾迹湍流特性. 结合风力机参数化模型的大涡模拟可准确预测尾迹蜿蜒等湍流特征, 是流动机理研究的有力工具, 可为发展快速预测模型提供数据和理论支撑. 接着, 本文介绍了叶尖涡、中心涡和尾迹蜿蜒并讨论其产生机理. 对于湍流来流, 叶尖涡主要存在于近尾迹. 蜿蜒是远尾迹的主要特征, 影响下游风力机的来流特征. 尾迹蜿蜒的产生有两种机制: 来流大尺度涡和剪切层失稳. 数值和观测结果显示两种机制共同存在. 机舱和中心涡对尾迹蜿蜒有重要影响. 采用叶片和机舱的致动面模型可准确预测尾迹蜿蜒. 研究显示不同风力机尾迹间的湍流特征存在相似性, 为发展尾迹湍流的快速预测模型提供了理论依据. 当前研究多关注平坦地形上的风力机尾迹, 复杂地形和海洋环境下的大气湍流和风力机尾迹的机理复杂, 现有工程模型无法准确预测, 有待深入研究.   相似文献   

8.
随着深水浮式海上风电场在世界范围内的兴起,浮式平台运动性能对风力机稳定运行及叶片气动载荷影响的研究具有重要意义。基于三维粘性不可压缩Navier-Stokes方程和适用于旋转流场分析的重整化群k-ε(RNG)湍流模型,数值模拟美国可再生能源实验室(NREL)5MW海上风力机的气动性能,并将数值模拟结果与NREL的设计参考数据进行对比分析,较好地验证了该数值模拟方法的有效性。进一步利用滑移网格技术模拟风力机叶片随浮式平台的典型周期性运动,实现浮式风力机叶片与周围流场的复杂非线性流固耦合分析,分别研究浮式平台不同运动幅值和运动周期对风力机叶片气动性能的影响规律,并从物理机理角度进行阐明分析。本文的主要研究成果,将对未来大型深水浮式海上风力机的气动性能分析及浮式平台系统的运动性能设计起到积极的指导作用。  相似文献   

9.
随着深水浮式海上风电场在世界范围内的兴起,浮式平台运动性能对风力机稳定运行及叶片气动载荷影响的研究具有重要意义。基于三维粘性不可压缩Navier-Stokes方程和适用于旋转流场分析的重整化群k-ε(RNG)湍流模型,数值模拟美国可再生能源实验室(NREL)5MW海上风力机的气动性能,并将数值模拟结果与NREL的设计参考数据进行对比分析,较好地验证了该数值模拟方法的有效性。进一步利用滑移网格技术模拟风力机叶片随浮式平台的典型周期性运动,实现浮式风力机叶片与周围流场的复杂非线性流固耦合分析,分别研究浮式平台不同运动幅值和运动周期对风力机叶片气动性能的影响规律,并从物理机理角度进行阐明分析。本文的主要研究成果,将对未来大型深水浮式海上风力机的气动性能分析及浮式平台系统的运动性能设计起到积极的指导作用。  相似文献   

10.
刘健  邹琳  陶凡  左红成  徐汉斌 《力学学报》2022,54(5):1209-1219
利用大涡模拟研究了雷诺数Re = 3900下串列双锥柱在间距比L/Dm = 2 ~ 10下的升阻力特性及三维流动结构. 研究发现: 上游锥柱在后方形成的两个展向不对称回流区, 使其后方压力分布不对称. 上游锥柱发展的上洗、下洗和侧面剪切层作用在下游锥柱的附着点位置不同是上游和下游锥柱时均阻力系数和脉动升力系数变化的主要原因, 串列双锥柱间流动结构随间距比变化可分为三种状态: 剪切层包裹状态, 过渡状态及尾流撞击状态. 剪切层包裹状态. 上游锥柱的自由端主导来流在下游锥柱迎风面影响范围广, 上游锥柱剪切层完全包裹住下游锥柱, 从而抑制下游锥柱后方回流区形成, 导致下游锥柱时均阻力系数降低; 尾流撞击状态; 上游锥柱尾流得到充分发展, 其回流区大小随间距比增大不再发生变化, 上游锥柱尾流出现周期性脱落, 撞击在下游锥柱表面, 从而使脉动升力系数大幅增加, 最大脉动升力系数较单直圆柱提升约20.7倍; 过渡状态, 此时时均阻力系数和脉动升力系数均会较剪切层包裹状态增加. 该研究可以为风力俘能结构群列阵布局提供理论支持.   相似文献   

11.
The computational fluid dynamics (CFD) methods are applied to aerodynamic problems for large scale wind turbines. The progresses including the aerodynamic analyses of wind turbine profiles, numerical flow simulation of wind turbine blades, evaluation of aerodynamic performance, and multi-objective blade optimization are discussed. Based on the CFD methods, significant improvements are obtained to predict two/three dimensional aerodynamic characteristics of wind turbine airfoils and blades, and the vortical structure in their wake flows is accurately captured. Combining with a multi-objective genetic algorithm, a 1.5 MW NH-1500 optimized blade is designed with high efficiency in wind energy conversion.  相似文献   

12.
An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force-moment sensor unit, a high-resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the tip-speed-ratio of the wind turbine model on the dynamic wind loads and wake flow characteristics were quantified in the terms of the variations of the aerodynamic thrust and bending moment coefficients of the wind turbine model, the evolution of the helical tip vortices and the unsteady vortices shedding from the blade roots and turbine nacelle, the deceleration of the incoming airflows after passing the rotation disk of the turbine blades, the TKE and Reynolds stress distributions in the near wake of the wind turbine model. The detailed flow field measurements were correlated with the dynamic wind load measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and turbulent vortex flows in the wakes of wind turbines for the optimal design of the wind turbines operating in atmospheric boundary layer winds.  相似文献   

13.
Two oscillating flaps located close to the tip and at mid span are used to excite the unstable modes of the tip vortex system of a wind turbine blade. The two flaps are deflected in opposite directions such that the root bending moment of the wind turbine blade remains almost unchanged. To investigate the mechanism of how and to what extent the deflection of the flaps influences the tip-vortex system, Large-Eddy Simulations in the Arbitrary Lagrangian-Eulerian formulation in a rotating frame of reference are performed at an averaged chord based Reynolds number of 300,000. Periodic boundary conditions are applied in the circumferential direction such that the flow over only one of the three blades of the wind turbine needs to be computed. A subsequent simulation of the trailing tip-vortex system is performed to analyze the evolution of the disturbed tip vortex. These simulations use a far-wake model based on the parameters obtained from the wind turbine simulation as inflow condition for the wake flow field. The comparison of the flow without and with oscillating flaps shows that the tip-vortex core is displaced by approximately 5% of the rotor radius by the flap motion. The root bending moment and torque at the root of the blade with flaps vary sinusoidally. Due to the compensation by the middle span flap, the difference of the root bending moment and torque is found to be less than 5% compared to the case without moving flaps. The simulations of trailing tip vortex show considerably earlier breakdown of the excited system, which proves the concept to excite instabilities in the vortex system by oscillating flaps successful.  相似文献   

14.
Two techniques that improve the aerodynamic performance of wind turbine airfoils are described. The airfoil S809, designed specially for wind turbine blades, and the airfoil FX60-100, having a higher lift-drag ratio, are selected to verify the flow control techniques. The flow deflector, fixed at the leading edge, is employed to control the boundary layer separation on the airfoil at a high angle of attack. The multi-island genetic algorithm is used to optimize the parameters of the flow deflector. The results indicate that the flow deflector can suppress the flow separation, delay the stall, and enhance the lift. The characteristics of the blade tip vortex, the wake vortex, and the surface pressure distributions of the blades are analyzed. The vortex diffuser, set up at the blade tip, is employed to control the blade tip vortex. The results show that the vortex diffuser can increase the total pressure coefficient of the core of the vortex, decrease the strength of the blade tip vortex, lower the noise, and improve the efficiency of the blade.  相似文献   

15.
In a large wind farm,the wakes of upstream and downstream wind turbines can interfere with each other,affecting the overall power output of the wind farm.To further improve the numerical accuracy of the turbine wake dynamics under atmosphere turbulence,this work proposes some improvements to the actuator line-large-eddy simulation(AL-LES)method.Based on the dynamic k-equation large-eddy simulation(LES),this method uses a precursor method to generate atmospheric inflow turbulence,models the tower and nacelle wakes,and improves the body force projection method based on an anisotropic Gaussian distribution function.For these three improvements,three wind tunnel experiments are used to validate the numerical accuracy of this method.The results show that the numerical results calculated in the far-wake region can reflect the characteristics of typical onshore and offshore wind conditions compared with the experimental results.After modeling the tower and nacelle wakes,the wake velocity distribution is consistent with the experimental result.The radial migration velocity of the tip vortex calculated by the improved blade body force distribution model is 0.32 m/s,which is about 6%different from the experimental value and improves the prediction accuracy of the tip vortex radial movement.The method proposed in this paper is very helpful for wind turbine wake dynamic analysis and wind farm power prediction.  相似文献   

16.
Determination of the aerodynamic configuration of wake is the key to analysis and evaluation of the rotor aerodynamic characteristics of a horizontal-axis wind turbine.According to the aerodynamic configuration, the real magnitude and direction of the onflow velocity at the rotor blade can be determined, and subsequently, the aerodynamic force on the rotor can be determined. The commonly employed wake aerodynamic models are of the cylindrical form instead of the actual expanding one. This is because the influence of the radial component of the induced velocity on the wake configuration is neglected. Therefore, this model should be called a "linear model". Using this model means that the induced velocities at the rotor blades and aerodynamic loads on them would be inexact. An approximately accurate approach is proposed in this paper to determine the so-called "nonlinear" wake aerodynamic configuration by means of the potential theory,where the influence of all three coordinate components of the induced velocity on wake aerodynamic configuration is taken into account to obtain a kind of expanding wake that approximately looks like an actual one. First, the rotor aerodynamic model composed of axial(central), bound, and trailing vortexes is established with the help of the finite aspect wing theory. Then, the Biot-Savart formula for the potential flow theory is used to derive a set of integral equations to evaluate the three components of the induced velocity at any point within the wake. The numerical solution to the integral equations is found,and the loci of all elementary trailing vortex filaments behind the rotor are determined thereafter. Finally, to formulate an actual wind turbine rotor, using the nonlinear wake model, the induced velocity everywhere in the wake, especially that at the rotor blade,is obtained in the case of various tip speed ratios and compared with the wake boundary in a neutral atmospheric boundary layer. Hereby, some useful and referential conclusions are offered for the aerodynamic computation and design of the rotor of the horizontal-axis wind turbine.  相似文献   

17.
The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on rotor blades on the vortex structures in the wake of a horizontal axis wind turbine by using the stereoscopic particle image velocimetry(Stereo-PIV) technique. During the experiments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run"measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic energy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the presence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover,as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.  相似文献   

18.
Wind turbines operate in the surface layer of the atmospheric boundary layer, where they are subjected to strong wind shear and relatively high turbulence levels. These incoming boundary layer flow characteristics are expected to affect the structure of wind turbine wakes. The near-wake region is characterized by a complex coupled vortex system (including helicoidal tip vortices), unsteadiness and strong turbulence heterogeneity. Limited information about the spatial distribution of turbulence in the near wake, the vortex behavior and their influence on the downwind development of the far wake hinders our capability to predict wind turbine power production and fatigue loads in wind farms. This calls for a better understanding of the spatial distribution of the 3D flow and coherent turbulence structures in the near wake. Systematic wind-tunnel experiments were designed and carried out to characterize the structure of the near-wake flow downwind of a model wind turbine placed in a neutral boundary layer flow. A horizontal-axis, three-blade wind turbine model, with a rotor diameter of 13 cm and the hub height at 10.5 cm, occupied the lowest one-third of the boundary layer. High-resolution particle image velocimetry (PIV) was used to measure velocities in multiple vertical stream-wise planes (xz) and vertical span-wise planes (yz). In particular, we identified localized regions of strong vorticity and swirling strength, which are the signature of helicoidal tip vortices. These vortices are most pronounced at the top-tip level and persist up to a distance of two to three rotor diameters downwind. The measurements also reveal strong flow rotation and a highly non-axisymmetric distribution of the mean flow and turbulence structure in the near wake. The results provide new insight into the physical mechanisms that govern the development of the near wake of a wind turbine immersed in a neutral boundary layer. They also serve as important data for the development and validation of numerical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号