首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe progress in the field of tuning, (re)configuration of Photonic crystal (PhC) based devices with a particular emphasis on our recent concepts and techniques that we have developed to tune and/or reconfigure the properties of photonic crystal nanocavities. We show how our hybrid approach based on photosensitive material and tapered silica fiber can tune the (Q, λ) properties of preexisting Photonic crystal cavities. We describe our alternative techniques to create ‘a posteriori’ spatially (re)configurable high‐Q cavities in a PhC platform. We show that optofluidics – the fusion of microfluidics with photonic devices – offers an unquestionable added value to the quest of a truly versatile, (re)configurable photonic crystal based photonic chip.  相似文献   

2.
This paper gives a brief introduction to our recent works on photonic crystal (PhC) cavities and related integrated optical structures and devices. Theoretical background and numerical methods for simulation of PhC cavities are first presented. Based on the theoretical basis, two relevant quantities, the cavity mode volume and the quality factor are discussed. Then the methods of fabrication and characterization of silicon PhC slab cavities are introduced. Several types of PhC cavities are presented, such as the usual L3 missing-hole cavity, the new concept waveguide-like parallel-hetero cavity, and the low-index nanobeam cavity. The advantages and disadvantages of each type of cavity are discussed. This will help the readers to decide which type of PhC cavities to use in particular applications. Furthermore, several integrated optical devices based on PhC cavities, such as optical filters, channel-drop filters, optical switches, and optical logic gates are described in both the working principle and operation characteristics. These devices designed and realized in our group demonstrate the wide range of applications of PhC cavities and offer possible solutions to some integrated optical problems.  相似文献   

3.
Wenyuan Rao 《Optik》2010,121(21):1934-1936
We present a design of all-optical switches based on one-dimensional photonic crystals (1D PhC) doped with nonlinear optical materials. The 1D PhC switch structure is composed of a PhC cavity sandwiched by two accessional PhC microcavities. The center PhC cavity has two resonant frequencies with nearly the same quality factors (Q), while the accessional PhC cavities have the same resonant frequency, which is equal to one of the resonant frequencies of the center cavity. The two accessional PhC cavities cause reduction of Q value in this resonant frequency and result in different Q values of two modes. We realize all-optical switch effect by selecting pump light wavelength at the low Q mode and probe light wavelength at the other mode. The theoretical simulations by using the finite difference time domain method show that the pump light intensity required to realize optical switch effect in the designed switch is 50 times smaller than that in one-dimensional photonic crystals cavity with only one resonant mode.  相似文献   

4.
As a well-established laser fabrication approach, holographic lithography, or multibeam interference patterning, is known for its capability to create long-range ordered large-volume photonic crystals (PhCs) rapidly. Its broad use is, however, hampered by difficulty in inducing artificially designed defects for device functions. We use pinpoint femtosecond laser ablation to remove and two-photon photopolymerization to add desired defective features to obtain photonic acceptors and photonic donors, respectively, in an otherwise complete PhC matrix produced by holographic lithography. The combined use of the two direct laser writing technologies would immediately make holographic lithography a promising industrial tool for PhC manufacture.  相似文献   

5.
We obtain the photonic bands and intrinsic losses for the triangular lattice three-component two- dimensional (2D) photonic crystal (PhC) slabs by expanding the electromagnetic field on the basis of waveguide modes of an effective homogeneous waveguide. The introduction of the third component into the 2D PhC slabs influences the photonic band structure and the intrinsic losses of the system. We examine the dependences of the band gap width and gap edge position on the interlayer dielectric constant and interlayer thickness. It is found that the gap edges shift to lower frequencies and the intrinsic losses of each band decrease with the increasing interlayer thickness or dielectric constant. During the design of the real PhC system, the effect of unintentional native oxide surface layer on the optical properties of 2D PhC slabs has to be taken into consideration. At the same time, intentional oxidization of macroporous PhC structure can be utilized to optimize the design.  相似文献   

6.
Cui Y  Liu K  MacFarlane DL  Lee JB 《Optics letters》2010,35(21):3613-3615
We designed, fabricated, and characterized a thermo-optically tunable compact (10 μm × 10 μm) silicon photonic crystal (PhC) light modulator that operates at around 1.55 μm for TE polarization. The operational principle of the device is the modulation of the cutoff frequency in a silicon-based line defect PhC. The cutoff frequency is shifted because of the thermo-optic tuning of the silicon refractive index, which is realized by localized heating on the PhC. The modulator is formed by a triangular lattice array of cylindrical air holes on a silicon-on-insulator wafer. Optical characterization was carried out, and the result clearly showed thermo-optic tuning of the cutoff frequency at around 1.55 μm.  相似文献   

7.
In this paper the analysis of multiple reflections in photonic crystal (PhC) multimode interference (MMI) couplers using eigen-mode expansion method is presented. The analysis is conducted on a hybrid PhC structure which consisted of 1-D PhC multimode waveguide sandwiched between 2-D PhC input/output waveguides. In PhC multimode waveguide, where the mechanism of wave confinement is not due to total internal reflection but due to photonic bandgap properties, the reflectivity at 2-D PhC facet wall would be very large for all the guided modes in the waveguide when ever the image formed due to MMI effect does not coincides with the output access waveguide.  相似文献   

8.
We designed and fabricated III–V compound semiconductor two-dimensional photonic crystal (PhC) thin film slabs with quantum dots (QDs) inside formed on Si substrates for highly integrated silicon photonic circuits with built-in nanolasers. Defect-shifted L3 type PhC nanocavities formed in GaAs thin films embedding 1.3 μm-emitting InAs QDs layer-transferred onto Si substrates were investigated. Quality factors <1000 for the PhC nanocavities on SiO2 were enhanced up to ∼8000 by removing SiO2 to form air-bridge structures, resulting in room temperature, continuous wave lasing.  相似文献   

9.
针对光子晶体在行波管中的应用,对有限开敞介质光子晶体的模式和带结构进行了分析和计算. 分析表明,有限开敞介质光子晶体中所能存在的模式包括EH和HE混合模式,如果是二维光子晶体,还存在E模式,E1模式即为无限光子晶体中的E极化. 计算表明,被用作行波管慢波电路的光子晶体可以不必拥有完全带隙,而只需要具有带间隙即可. 关键词: 光子晶体 本征值方程 行波管 带结构  相似文献   

10.
A theory of photonic crystal (PhC) slabs is described, which relies on an expansion in the basis of guided modes of an effective homogeneous waveguide and on treating the coupling to radiative modes and the resulting losses by perturbation theory. The following applications are discussed for the case of a high-index membrane: gap maps for photonic lattices in a waveguide; exciton–polariton states, when the PhC slab contains a quantum well with an excitonic resonance; propagation losses of line-defect modes in W1 waveguides, also in the presence of disorder; the quality factors of photonic nanocavities. In particular, we predict that disorder-induced losses below 0.2 dB/mm can be achieved in state-of-the-art samples by increasing the channel width of W1 waveguides.  相似文献   

11.
Enhanced third harmonic (TH) generation from Silicon-On-Insulator (SOI) planar waveguides as well as SOI photonic crystal (PhC) slabs is studied in different angular configurations, both in the visible and infrared energy ranges. In the SOI planar waveguide, the multilayer structure causes the optical properties such as TH reflection to be different from those of bulk silicon samples. This behavior is well reproduced by calculations of TH reflectance.Measurements of third-harmonic reflection and diffraction from one-dimensional PhC slabs etched in the SOI waveguide are also reported. The angular positions of TH peaks at various diffraction orders agree well with those calculated from a nonlinear grating equation. Both reflection and diffraction processes contribute to enhanced TH generation efficiency in the PhC slabs.TH reflectance measurements performed on PhC slabs in the near infrared show a resonant interaction between the incident beam and the photonic structure, dependent on the angle of incidence. This leads to a nonlinear conversion efficiency which is strongly enhanced with respect to that of the SOI waveguide, due to the excitation of strong local fields associated with the presence of photonic modes in the PhC slab.  相似文献   

12.
Kim SH  Huang J  Scherer A 《Optics letters》2012,37(4):488-490
A photonic crystal (PhC) nanocavity formed in an optically very thick slab can support reasonably high-Q modes for lasing. Experimentally, we demonstrate room-temperature pulsed lasing operation from the PhC dipole mode emitting at 1324 nm, which is fabricated in an InGaAsP slab with thickness (T) of 606 nm. Numerical simulation reveals that when T≥800 nm, over 90% of the laser output power couples to the PhC slab modes, suggesting a new route toward an efficient in-plane laser for photonic integrated circuits.  相似文献   

13.
In article a two-dimensional photonic crystal (PhC) is considered and modelled as a new generation antireflection coating for optoelectronic devices. Traditional antireflective coatings (ARCs) reduce the reflection of the radiation only – the new generation of antireflective coatings should affect the distribution of the radiation also. Such functionality can be provided by the two-dimensional PhC which reduce the reflection and scatter transmitted light. Prior to the fabrication, the PhCs should be designed and analysed. Results of the analysis should provide quantitative means for choice of materials and design solutions. In work, we analyse the electromagnetic field distribution as Poynting vectors inside the materials of optoelectronic devices, in order to investigate the possibility of improving the construction of future optoelectronic devices. Furthermore, we calculate the reflection and transmission of that ARC. It’s a complex optic analysis of new generation of ARC. The numerical analysis has been performed with the FDTD method in Lumerical Software. In work, we consider the two-dimensional photonic crystal on the top surface of optoelectronic structures. We compared the results with the traditional ARC from these same parameters as PhC: thickness and material. As an example, we presented the application of modelled, photonic crystal, thin-film, GaAs solar cells with PhC on top. The efficiency of this solar cell, using the photonic crystal, was improved by 6.3% over the efficiency of this same solar cell without PhC. Thus, our research strongly suggests that the unique properties of the photonic crystal could be used as a new generation of ARC.  相似文献   

14.
In this paper, photonic crystal (PhC) based on two dimensional (2D) square and hexagonal lattice periodic arrays of Silicon Carbide (SiC) rods in air structure have been investigated using plane wave expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength (λ = 1.55 μm) by varying the radius of the rods and lattice constant. The result obtained shows that a photonic band gap (PBG) exists for TE-mode propagation. First, the effect of temperature on the width of the photonic band gap in the 2D SiC PhC structure has been investigated and compared with Silicon (Si) PhC. Further, a cavity has been created in the proposed SiC PhC and carried out temperature resiliency study of the defect modes. The dispersion relation for the TE mode of a point defect A1 cavity for both SiC and Si PhC has been plotted. Quality factor (Q) for both these structures have been calculated using finite difference time domain (FDTD) method and found a maximum Q value of 224 for SiC and 213 for Si PhC cavity structures. These analyses are important for fabricating novel PhC cavity designs that may find application in temperature resilient devices.  相似文献   

15.
We consider a significant lowering of the threshold of stimulated Raman scattering in solid fused silica spherical microlenses cavities that is caused by an increase in the integral overlap factor of whispering gallery modes. The structure of focal regions of a microlens is shown to have the shape of honeycombs, forming a photonic crystal or a photonic nanojet. We show that, at comparatively small numerical apertures NA = 0.7–0.8, which correspond to hemispherical microlenses, a spherical microlens cavity exhibits the possibility of focusing laser radiation beyond the Abbe diffraction limit. This enables the possibility of wide practical applications of microspheres as a focusing element the resolving power of which exceeds the Abbe diffraction limit in the near field. The whispering-gallery-mode spherical microlens cavity makes it possible to perform laser generation with a duration of a coherent pulse in the subfemtosecond range and to form a subwavelength focal region of the near field. This ensures the possibility of detecting single molecules of a substance in the subwavelength range in the near field and can be used to increase the sensitivity of intracavity spectroscopy methods and as microlasers for excitation of molecules in metal molecular nanoswitches and semiconductor heterostructures. From an array of microlens cavities, metamaterials with a negative refractive index can be formed.  相似文献   

16.
Yuan  Rui-hua  WANG  Chen  Li  Zhi-yuan 《Optical Review》2021,28(4):376-382
Optical Review - We have provided two compact designs of on-chip silicon photonic crystal (PhC) AND and XOR logic devices, which can provide multiple logic functions through different input...  相似文献   

17.
Song BS  Jeon SW  Noda S 《Optics letters》2011,36(1):91-93
We design and fabricate ultra-high-quality (Q) photonic nanocavities in a symmetrically glass-clad silicon (Si) two-dimensional (2D) photonic crystal (PhC) structure. We theoretically investigate the dependence of the refractive index of the glass on the Q factors for asymmetric and symmetric structures. We show that the index-symmetric distribution of the glass is a critical factor to realize ultrahigh Q factors for glass-clad 2D PhC structures. We fabricate symmetrically glass-clad Si PhC nanocavities and achieve a record Q factor of 1×10(6), comparable with the highest Q factors of nanocavities in air-bridge structures.  相似文献   

18.
Prkna L  Talneau A  Mulot M  Berrier A  Anand S 《Optics letters》2006,31(14):2139-2141
The group index dispersion and birefringence of guided modes supported by straight photonic crystal (PhC) waveguides are theoretically and experimentally investigated as a function of the waveguide width within various reduced frequency domains. Within the photonic gap and far from the Brillouin zone edges, strongly confined modes supported by narrow PhC guides exhibit both a group index and a birefringence larger than those of a deep ridge. These two results evidence the contribution of the photonic gap to the guiding mechanism in the refractivelike domain.  相似文献   

19.
We fabricated germanium-based photonic crystal (PhC) slabs and characterized them by photoluminescence (PL) measurements at room temperature. Air-bridge-type Ge PhC slabs showed stronger PL than non-processed Ge layers on SiO2 and than Ge PhC slabs on SiO2. This enhancement is attributed to improved extraction efficiency due to the PhC patterns and to suppressed light leakage into the substrate by utilizing the air-suspended structure. In particular, when flat photonic band-edge modes around the Γ point are tuned to the Ge emission range, larger enhancement of integrated PL intensity was observed. A maximum enhancement ratio of integrated intensity up to 22 was demonstrated in an air-suspended Ge PhC slab with appropriate structural parameters. This is the largest enhancement factor of Ge PL using photonic nanostructures reported so far.  相似文献   

20.
It is well known that spatial symmetry in a photonic crystal(PhC) slab is capable of creating bound states in the continuum(BICs),which can be characterized by topological charges of polarization vortices.Here,we show that when a PT-symmetric perturbation is introduced into the PhC slab,a new type of BICs(pt-BICs) will arise from each ordinary BIC together with the creation of rings of lasing threshold modes with pt-BICs embedded in these rings.Different from ordinary BICs,the Q-factor divergence rate of a pt-BIC is reduced and anisotropic in momentum space.Also,pt-BICs can even appear at off-high symmetry lines of the Brillouin zone.The pt-BICs also carry topological charges and can be created or annihilated with the total charge conserved.A unified picture on pt-BICs and the associated lasing threshold modes is given based on the temporal coupled mode theory.Our findings reveal the new physics arising from the interplay between PT symmetry and BIC in PhC slabs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号