首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
通过高温固相法合成了一系列Ba3La1-x(PO4)3∶xDy3+荧光粉材料。利用XRD测量样品的物相,结果显示样品为纯相Ba3La(PO4)3晶体。样品的激发光谱由一系列宽谱组成,峰值分别位于322,347,360,386,424,451 nm。在347 nm激发下,荧光粉在482 nm(4F9/2→6H15/2)和575 nm(4F9/2→6H13/2)处有很强的发射。研究了不同Dy3+掺杂浓度对样品发射光谱的影响,当Dy3+摩尔分数x=0.10时出现猝灭现象,浓度猝灭机理为电偶极-电偶极相互作用。确定了不同Dy3+掺杂浓度的Ba3La(PO4)3∶Dy3+的荧光寿命。Ba3La(PO4)3∶Dy3+荧光粉发射光谱的色坐标位于白光区域。  相似文献   

2.
采用高温固相法在1 400℃下合成了近紫外光激发的单一基质白光荧光粉Ca3Y2-xSi3O12∶xDy3+。XRD检测结果显示,合成的荧光粉主晶相为Ca3Y2Si3O12。荧光光谱分析结果表明:Ca3Y2-xSi3O12∶xDy3+硅酸盐荧光粉可以被348 nm的近紫外光激发,产生白光发射,两个主发射峰位于481 nm(4F9/2→6H15/2)和572 nm(4F9/2→6H13/2)。用481 nm最强峰监测,得到主激发峰位于348 nm的激发光谱,该光谱覆盖了300~450 nm的波长范围。研究了Dy3+离子掺杂浓度及助熔剂H3BO3对荧光粉发光特性的影响,Dy3+离子的最佳掺杂量x(Dy3+)为5%,助熔剂的最佳质量分数为2%。色坐标分析显示:荧光粉的色坐标随着掺杂离子浓度及助熔剂加入量改变而发生变化。x(Dy3+)为5%且H3BO3的质量分数为2%的样品的色坐标为(0.29,0.33),位于标准白光点的色坐标范围内。  相似文献   

3.
为获得Bi2ZnB2O7:Y3+/Dy3+新型荧光粉材料的最强黄光发光强度,运用均匀设计和二次通用旋转组合设计相结合法对Y3+/Dy3+最佳离子掺杂浓度进行优化研究,得到Y3+和Dy3+离子的最佳掺杂浓度分别为4.498mol%和6.001mol%.采用高温固相法合成最优样品,对样品结构进行表征,测定其激发光谱和发射光谱对Dy3+离子在Bi2ZnB2O7基质中的发光性质,研究发现:样品在452nm激发下,发射光谱主要由(460~500nm)蓝光发射、(550~610nm)黄光发射、(650~700nm)红光发射组成,分别对应于Dy3+的4F9/2→6H15/2、4F9/2→6H13/2及4F9/2→6H11/2跃迁;Bi2ZnB2O7基质为Dy3+提供了非中心对称的晶格格位;最优样品中Dy3+的荧光寿命为0.427ms,与相同浓度Dy3+单掺杂样品相比较可知引入Y3+在一定程度上提高了发光强度.  相似文献   

4.
为获得Bi2ZnB2O7:Y3+/Dy3+新型荧光粉材料的最强黄光发光强度,运用均匀设计和二次通用旋转组合设计相结合法对Y3+/Dy3+最佳离子掺杂浓度进行优化研究,得到Y3+和Dy3+离子的最佳掺杂浓度分别为4.498mol%和6.001mol%.采用高温固相法合成最优样品,对样品结构进行表征,测定其激发光谱和发射光谱对Dy3+离子在Bi2ZnB2O7基质中的发光性质,研究发现:样品在452nm激发下,发射光谱主要由(460~500nm)蓝光发射、(550~610nm)黄光发射、(650~700nm)红光发射组成,分别对应于Dy3+的4F9/2→6H15/2、4F9/2→6H13/2及4F9/2→6H11/2跃迁;Bi2ZnB2O7基质为Dy3+提供了非中心对称的晶格格位;最优样品中Dy3+的荧光寿命为0.427ms,与相同浓度Dy3+单掺杂样品相比较可知引入Y3+在一定程度上提高了发光强度.  相似文献   

5.
任林娇  杜晓晴  雷小华  金雷  陈伟民 《发光学报》2012,33(11):1161-1165
通过控制Dy3+的掺杂浓度,制备出了不同浓度的Eu2+,Dy3+单掺和共掺高硅氧发光玻璃,测试其激发和发射光谱,讨论了Dy3+浓度对Eu2+,Dy3+共掺样品发光性质的影响。结果表明,Eu2+,Dy3+共掺高硅氧发光玻璃中存在Dy3+向Eu2+的无辐射能量传递现象,且Dy3+的引入会使高硅氧发光玻璃中Eu—O的共价作用减弱,造成Eu2+发射峰蓝移;随着Dy3+浓度的增加,Dy3+→Eu2+能量传递增强,Eu2+发光增强;Dy3+含量继续增加,则Dy3+发光出现浓度猝灭,且Dy3+→Eu2+能量传递减弱。  相似文献   

6.
利用高温固相法制备了BaGd_2(MoO_4)_4∶Tb~(3+)与BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)荧光粉,并借助于X射线衍射(XRD)、激发光谱、发射光谱及荧光衰减曲线对样品的结构及发光性能进行了表征。在290 nm激发下,BaGd_2(MoO_4)_4∶Tb~(3+)样品在550 nm处具有较强的绿光发射,表明该样品可用作绿色荧光粉。Tb~(3+)离子的最佳掺杂浓度为50%,电偶极间相互作用是引起浓度猝灭效应的主要原因。当在BaGd_2(MoO_4)_4∶Tb~(3+)荧光粉中共掺入Eu~(3+)离子后,可同时观测到Tb~(3+)与Eu~(3+)离子的特征发射峰。随Eu~(3+)掺杂浓度的升高,Tb~(3+)离子的发光强度逐渐下降,而Eu~(3+)离子的发光强度逐渐增加。根据BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)中Tb~(3+)离子的荧光寿命计算了Tb~(3+)与Eu~(3+)离子间的能量传递效率,并根据荧光寿命与激活离子掺杂浓度的关系证实了能量传递机制为电偶极间相互作用。  相似文献   

7.
用熔融急冷法制备了系列Tm3+/Dy3+共掺0.9(Ge25Ga5S70)-0.1CsI硫卤玻璃,测试了样品的吸收光谱以及800 nm激光泵浦下中红外荧光光谱特性.结果表明:Tm3+离子的引入能够有效提高Dy3+离子2.9 μm中红外荧光强度.当Tm3+离子掺杂浓度固定,随着Dy3+离子掺杂浓度的增加,Tm3+:3F4→3H6跃迁产生的1.8 μm荧光强度和荧光寿命明显单调下降,Tm3+:3F4→Dy3+:6H11/2能量传递为Tm3+/Dy3+之间能量转移的主要途径.由于Tm3+:1.8μm荧光发射光谱与Dy3+:6H15/2→6H11/2的吸收光谱之间存在较大的重叠区,Tm3+/Dy3+之间有效的能量传递主要来源于Tm3+:3F4能级向Dy3+:6H11/2能级的共振能量传递.  相似文献   

8.
采用微乳液-水热法合成一系列NaLa(MoO4)2∶Eu3+/Tb3+/Tm3+单/共掺的荧光粉(NLM)。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、荧光光谱对荧光粉的晶体结构、形貌特征和发光性质进行了测试和研究。结果表明:所制备的样品均为四方晶系单晶,Eu3+,Tb3+,Tm3+均以取代的方式进入La3+的格位;样品的形貌为四方片状结构,颗粒尺寸1~1.5μm;当Eu3+掺杂浓度为是9%时,NLM∶9%Eu3+荧光粉在616nm发射峰是最强的,此时在NLM基质中Eu3+之间的临界传递距离(Rc)约为15.20。在NLM∶9%Eu3+的发射光谱中,591nm处的发射峰为Eu3+的5 D0→7 F1的磁偶极跃迁;616nm处的发射峰为Eu3+的5 D0→7 F2的电偶极跃迁,电偶极跃迁发射强度约是磁偶极跃迁强度的10倍,表明Eu3+位于无反演对称中心格位。采用固定Eu3+(Tb3+)的浓度,改变Tb3+(Eu3+)浓度的方法,研究了Eu3+与Tb3+之间的能量传递机理。通过调节Eu3+,Tb3+和Tm3+的掺杂浓度,实现在单一基质条件下可见光区域的光色调节,在360nm激发下NLM∶x%Eu3+,y%Tb3+,z%Tm3+荧光粉的发光由蓝光(0.205,0.135)调到伪白光(0.305,0.266)。  相似文献   

9.
采用溶胶凝胶法制备了Y_4Zr_3O_(12)∶Eu~(3+)纳米荧光粉,分别采用XRD、TEM和荧光光谱仪对样品的结构、形貌和发光性能进行了表征,探讨了烧结温度和Eu~(3+)掺杂浓度对荧光粉发光性能的影响。结果表明,样品可以被394 nm和467 nm的激发光有效激发。样品的最佳烧结温度和Eu~(3+)离子的最佳掺杂摩尔分数分别为1 400℃和18%。浓度猝灭主要归因于电偶极-电偶极相互作用。  相似文献   

10.
利用溶胶-凝胶法制备了Dy3+掺杂的YAl3(BO3)4荧光粉。通过X射线衍射仪(XRD)、荧光(FL)光谱仪对所合成样品的结构和发光性能进行表征。研究了Dy3+离子掺杂浓度和焙烧温度对YAl3(BO3)4∶Dy3+荧光粉的结构和发光性能的影响。结果表明:Y1-xAl3(BO3)4∶Dy3x+在Dy掺杂摩尔分数为x=0.05,焙烧温度为1 100℃时的发光强度最大。Y0.95Al3(BO3)4∶Dy30.+05荧光粉在774 nm波长光激发下,最强发射峰位于575nm。该荧光粉可将700~900 nm和290~450 nm范围内的光转换为染料敏化电池吸收的575 nm附近可见光。  相似文献   

11.
天然方柱石是一种典型的硅酸盐类的发光矿石,针对天然高发光效率方柱石的生成条件及化学成份,采用高温固相法在1 100℃弱还原气氛下合成了Na4Ca4Al6Si9O24(方柱石),并合成了一系列掺杂Ce3+,Tb3+的荧光粉,对其晶体结构做了讨论。通过分别对单掺Ce3+,Tb3+和共掺Ce3+,Tb3+样品发光性质的研究,发现共掺杂的样品其在545nm处由于Tb3+的5 D+4→7 F5跃迁发光强度远远大于单掺Tb3的样品。最后通过掺杂不同浓度Ce3+样品发光性质的研究,以及其荧光寿命和能量传递机理分析,结果表明随着Ce3+掺杂浓度的变化,样品的Tb3+的5 D7 4→F5跃迁(545nm)发光强度及寿命也随着变化,并发现Ce3+对Tb3+存在能量传递,且当Ce3+和Tb3+的质比为0.02∶0.03时能量传递效率最高。通过色坐标的测量,发现随着Ce3+浓度的改变,样品的发光可在绿色区域进行调节。因此,认为Na4Ca4Al6Si9O24∶Ce3+,Tb3+荧光粉有望成为新型白光LED荧光粉。  相似文献   

12.
通过高温固相法合成了一系列Ba3Y4-xO9:xDy3+荧光粉材料。利用X射线粉末衍射、荧光光谱和荧光寿命对样品进行了表征。实验表明,样品的激发光谱由一系列线状峰组成,峰值分别位于328,355,368,386,427,456,471 nm。在355 nm激发下,荧光粉在490 nm(4F9/26H15/2)和580 nm(4F9/26H13/2)处有很强的发射,发射光谱的色坐标位于黄光区域。研究了不同Dy3+掺杂浓度对样品发光性质的影响,发现样品的发光随着Dy3+浓度的增大而增强,但光谱形状基本保持不变,表明Dy3+占据了基质中低对称性的Y3+格位。当Dy3+摩尔分数x=0.08时出现发光强度猝灭现象,浓度猝灭机理为电偶极-电偶极相互作用。样品的发光寿命随着Dy3+浓度的增大逐渐减小,进一步证明了Dy3+离子之间存在着能量传递现象。Ba3Y4O9:Dy3+荧光粉的发光位于黄光区域,有较好的热稳定性,是潜在的白光LED用荧光粉材料。  相似文献   

13.
陈鸿  李晨霞  华有杰  徐时清 《发光学报》2013,34(10):1324-1327
采用高温固相法制备了一种新型的白光LED用Ca3Si2O4N2∶Eu2+,Ce3+,K+荧光粉。利用X射线衍射仪对样品的物相结构进行了分析,结果表明:Ce3+和K+离子的掺杂没有改变Ca3Si2O4N2∶Eu2+荧光粉的主晶相。利用荧光光谱仪对样品的发光性能进行了测试,发现样品在355 nm激发下得到的发射光谱为峰值位于505 nm的单峰,是Eu2+离子5d-4f电子跃迁引起的。Ca3Si2O4N2∶Eu2+荧光粉通过Ce3+和K+离子的掺杂,发光明显增强。当Ce3+的摩尔分数为1%时,荧光粉的发光强度达到最大值,是单掺Eu2+离子荧光粉发光强度的168%。通过光谱重叠的方法计算Ce3+→Eu2+能量传递临界的距离为2.535 nm。  相似文献   

14.
采用高温熔融法制备了一系列Ce3+/Sm3+共掺透明微晶玻璃,并研究了其发光特性.在微晶玻璃中Ce3+呈现出基于4f 5d跃迁的较强的宽带蓝光发射,通过调节Ce3+/Sm3+离子的掺杂浓度,Ce3+/Sm3+离子共掺微晶玻璃发光的色度逐渐发生变化,当CeO2/Sm2O3掺杂的量比为1∶1时,制得的微晶玻璃发光色坐标为(0.315,0.296).通过光谱和荧光衰减曲线,研究了Ce3+离子到Sm3+离子的能量传递,在SAZKNGC0.6S0.6微晶玻璃中,Ce3+离子向Sm3+离子传递能量效率约为20%.结果表明,Ce3+/Sm3+共掺微晶玻璃是白光LED的一种潜在基质材料  相似文献   

15.
使用高温固相法制备了La7(1-x)P3O18∶xDy3+发光材料,在347nm激发下,其发射峰分别为480、578、664nm,分别对应离子Dy3+能级内的4F9/2→6H15/2、6H13/2和6H11/2跃迁.随着Dy3+浓度的增加,黄光和蓝光的强度的比值逐渐减小,当Dy3+浓度为2mol%时,发光强度最大,计算出的色坐标处于白光区域内(0.33,0.33),该材料的发光颜色随Dy3+浓度的变化而在白光区域内改变,因此,该材料可作为紫外激发的白色发光材料.  相似文献   

16.
采用基于高温固相的两步合成法,以BaSiO3为前驱体制备了Ba3Si6O9N4∶Eu2+荧光粉,主要研究了不同Eu2+掺杂浓度对Ba3Si6O9N4∶Eu2+荧光粉发光性能的影响机理,并与传统高温固相法制备的Ba3Si6O9N4∶Eu2+荧光粉的发光机理进行了对比分析。结果表明:与传统高温固相法相比,两步法制备的Ba3Si6O9N4∶Eu2+荧光粉具有更高的纯度和结晶度。Eu2+掺杂浓度大于9%时,两步法和传统高温固相法制备的样品都发生浓度猝灭现象。传统高温固相法与两步法制备Ba3Si6O9N4:Eu2+荧光粉的浓度猝灭机理一致,均是由于电偶极-电偶极相互作用造成的。在330nm的激发光下,两步法制备的Ba3Si6O9N4∶Eu2+荧光粉的发射光谱(峰值489nm)与传统的高温固相法(峰值512nm)相比,出现了蓝移的现象,更加接近于理论发射光谱中心(480nm)。能谱分析结果显示,两步法制备的荧光粉的元素组分更接近理论值,能有效降低晶格缺陷。两步法制备的Ba3Si6O9N4∶Eu2+荧光粉样品具有更好的热稳定性,更利于白光LED的应用。  相似文献   

17.
采用改进的两步高温固相熔融法制备了Yb^3+、Eu^3+、La^3+共掺杂CaF 2的上转换荧光粉。基于荧光猝灭原理,通过改变La^3+掺杂浓度来调节CaF 2∶Yb^3+/Eu^3+材料的发光性能,并在980 nm近红外光激发下,获得了该材料的白色上转换发光(UCL)。在该发光体系中,Yb^3+不仅起到了敏化Eu^3+的作用,同时,Yb^3+二聚体(Yb^3+-dimer)自身合作发出波长范围480~540 nm的绿色荧光。而白光三基色中的绿光正是来自Yb^3+二聚体的合作发光。Eu^3+则作为激活剂,同时发出红色和蓝色荧光。荧光寿命测试结果表明Yb^3+-dimer与Eu^3+之间存在有效的能量传递。值得注意的是,在980 nm激光激发下,1%La^3+掺杂的样品表现出最佳的红、绿、蓝三基色光比列,实现了材料的上转换白光发射,其色度坐标为(0.311,0.340)。  相似文献   

18.
周巍  吕树臣 《光子学报》2008,37(10):2018-2023
利用共沉淀法制备了纳米晶ZrO2∶Dy3+发光粉体,对不同掺杂浓度、不同煅烧温度的系列样品,均观测到Dy3+离子的室温强特征发射.样品的晶相与发射性质的研究表明:所制备的样品经600℃~950 ℃热处理后,晶相经历从四方相到以单斜相为主的变化;由于晶相的变化,发现有两个发光中心,分别位于四方相和单斜相.激发Dy3+的6P7/2能级,当稀土离子处在四方相(格位一)时有利于483 nm和583 nm的发射,当稀土离子处在单斜相(格位二)时有利于490 nm和577 nm的发射.基质ZrO2和Dy3+离子之间有能量传递,950℃时能量传递效果最好.荧光强度与掺Dy3+离子浓度关系表明,Dy3+在纳米晶ZrO2中的最适合掺杂浓度与ZrO2的晶相有关,四方相时,最适合掺杂浓度为0.5%,混合相时为1%.  相似文献   

19.
为了研究紫外光作用下La1-xYO3∶xPr3+荧光粉的光致发光特性和发光机理,以尿素为辅助燃烧原料,采用溶液燃烧合成法,制备了不同掺杂浓度的La1-xYO3∶xPr3+荧光粉样品.通过X-射线衍射、扫描电子显微镜和光谱学手段,对La1-xYO3∶xPr3+荧光粉的晶相结构、形貌和发光性质进行了表征和研究.结果表明,所制备的LaYO3∶Pr3+样品具有立方晶形结构,在波长为295nm紫外光源的激发下,荧光粉发射出很强的绿色荧光.随着Pr3+离子掺杂浓度的增加,荧光粉的绿色发光强度也随之增强.当掺杂浓度增至1.0mol%时,其绿色发光强度达到最大.之后,随着Pr3+离子掺杂浓度的进一步增加,荧光粉的绿色发光强度开始逐渐减弱,出现浓度猝灭效应.  相似文献   

20.
稀土掺杂发光材料一直是科研领域研究的热点,被广泛应用于白光LED、温度传感、显示显像、新能源和激光等领域。基质的结构对于稀土离子光致发光特性有非常重要的影响,在众多发光基质材料中,硼酸盐具有透光范围宽、光学损伤阈值高、较好的热稳定性和化学稳定性等优点。碱土-稀土金属硼酸盐Sr3Y2(BO3)4具有出色的光学性能,对其发光性能的研究具有重要意义。稀土离子Eu3+具4f6电子层,是一种典型的下转换发光中心离子,常被选作红色发光材料的激活剂。Dy3+具4f9电子层,也是一种典型的下转换发光中心离子,在紫外光激发下,在蓝色光区和橙色光区有较强的荧光发射。采用高温固相法合成了Sr3Y2(BO3)4∶Eu3+/Dy3+荧光粉,通过XRD和SEM对样品的结构和形貌进行了表征,XRD结果表明,1 000 ℃烧结5 h,H3BO3过量20%为最佳制备条件,且少量的Eu3+和Dy3+掺杂并未改变Sr3Y2(BO3)4的晶格结构。SEM图像表明Sr3Y2(BO3)4基质的平均晶粒尺寸为2~4 μm,10%Eu3+单掺和5%Eu3+/5%Dy3+双掺样品与基质Sr3Y2(BO3)4的SEM图像相比,形貌和尺寸并没有发生明显的改变。Sr3Y2(BO3)4∶Eu3+荧光粉的发光结果表明,分别在395和466 nm激发下,浓度为5%,10%和15%的Eu3+单掺Sr3Y2(BO3)4荧光粉的主要发光位于593和613 nm的红光发射,峰强度随着Eu3+浓度的增加呈现先增加后降低的变化形式,掺杂浓度为10%时发光强度最大,说明存在浓度猝灭现象。色坐标结果显示,激发波长由395 nm变化到466 nm,Sr3Y2(BO3)4∶Eu3+荧光粉的发光颜色从橙红色向红色转变。引入Dy3+后,Sr3Y2(BO3)4∶Eu3+/Dy3+样品的发射光谱出现Dy3+的486 nm的蓝光发射(4F9/2→6H15/2)和576 nm的橙光发射(4F9/2→6H13/2),并且随着Dy3+浓度的增加,对Eu3+的5D0→7F1, 2, 3, 4跃迁有抑制作用。色坐标结果显示通过调整掺杂离子Eu3+和Dy3+的比例可实现Sr3Y2(BO3)4∶Eu3+/Dy3+荧光粉的颜色从红色区域向橙色区域转变,说明其在显示方面具有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号