首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
The electrical properties of A1GaN/GaN high electron mobility transistor (HEMT) with and without high-κ organic dielectrics are investigated. The maximum drain current ID max and the maximum transconductance gm max of the organic dielectric/A1CaN/GaN structure can be enhanced by 74.5%, and 73.7% compared with those of the bare A1GaN/GaN HEMT, respectively. Both the threshold voltage VT and gm max of the dielectric/AlGaN/GaN HEMT are strongly dielectric-constant-dependent. Our results suggest that it is promising to significantly improve the performance of the A1GaN/GaN HEMT by introducing the high-κ organic dielectric.  相似文献   

2.
<正>Sodium beta-alumina(SBA) is deposited on AlGaN/GaN by using a co-deposition process with sodium and Al2O3 as the precursors.The X-ray diffraction(XRD) spectrum reveals that the deposited thin film is amorphous.The binding energy and composition of the deposited thin film,obtained from the X-ray photoelectron spectroscopy(XPS) measurement,are consistent with those of SBA.The dielectric constant of the SBA thin film is about 50.Each of the capacitance-voltage characteristics obtained at five different frequencies shows a high-quality interface between SBA and AlGaN.The interface trap density of metal-insulator-semiconductor high-electron-mobility transistor(MISHEMT) is measured to be(3.5~9.5)×1010 cm-2·eV-1 by the conductance method.The fixed charge density of SBA dielectric is on the order of 2.7×1012 cm-2.Compared with the AlGaN/GaN metal-semiconductor heterostructure high-electronmobility transistor(MESHEMT),the AlGaN/GaN MISHEMT usually has a threshold voltage that shifts negatively. However,the threshold voltage of the AlGaN/GaN MISHEMT using SBA as the gate dielectric shifts positively from—5.5 V to—3.5 V.From XPS results,the surface valence-band maximum(VBM-EF) of AlGaN is found to decrease from 2.56 eV to 2.25 eV after the SBA thin film deposition.The possible reasons why the threshold voltage of AlGaN/GaN MISHEMT with the SBA gate dielectric shifts positively are the influence of SBA on surface valence-band maximum (VBM-EF),the reduction of interface traps and the effects of sodium ions,and/or the fixed charges in SBA on the two-dimensional electron gas(2DEG).  相似文献   

3.
Accumulation-type GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with atomic-layerdeposited Al2O3 gate dielectrics are fabricated.The device,with atomic-layer-deposited Al2O3 as the gate dielectric,presents a drain current of 260 mA/mm and a broad maximum transconductance of 34 mS/mm,which are better than those reported previously with Al2O3 as the gate dielectric.Furthermore,the device shows negligible current collapse in a wide range of bias voltages,owing to the effective passivation of the GaN surface by the Al2O3 film.The gate drain breakdown voltage is found to be about 59.5 V,and in addition the channel mobility of the n-GaN layer is about 380 cm2 /Vs,which is consistent with the Hall result,and it is not degraded by atomic-layer-deposition Al2O3 growth and device fabrication.  相似文献   

4.
张光沉  冯士维  周舟  李静婉  郭春生 《中国物理 B》2011,20(2):27202-027202
The evaluation of thermal resistance constitution for packaged AlGaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper.The evaluation is based on the transient heating measurement of the AlGaN/GaN HEMT by pulsed electrical temperature sensitive parameter method.The extracted chip-level and package-level thermal resistances of the packaged multi-finger AlGaN/GaN HEMT with 400-μm SiC substrate are 22.5 K/W and 7.2 K/W respectively,which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged AlGaN/GaN HEMTs.It is also experimentally proved that the extraction of the chiplevel thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage.  相似文献   

5.
In this paper, a new current expression based on both the direct currect(DC) characteristics of the AlGaN/GaN high election mobility transistor(HEMT) and the hyperbolic tangent function tanh is proposed, by which we can describe the kink effect of the AlGaN/GaN HEMT well. Then, an improved EEHEMT model including the proposed current expression is presented. The simulated and measured results of I–V, S-parameter, and radio frequency(RF) large-signal characteristics are compared for a self-developed on-wafer AlGaN/GaN HEMT with ten gate fingers each being 0.4-μm long and 125-μm wide(Such an AlGaN/GaN HEMT is denoted as AlGaN/GaN HEMT(10 × 125 μm)). The improved large signal model simulates the I–V characteristic much more accurately than the original one, and its transconductance and RF characteristics are also in excellent agreement with the measured data.  相似文献   

6.
We present an AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT) with an NbAlO high-k dielectric deposited by atomic layer deposition (ALD).Surface morphology of samples are observed by atomic force microscopy (AFM),indicating that the ALD NbAlO has an excellent-property surface.Moreover,the sharp transition from depletion to accumulation in capacitance-voltage (C-V)curse of MIS-HEMT demonstrates the high quality bulk and interface properties of NbAlO on AlGaN.The fabricated MIS-HEMT with a gate length of 0.5 μm exhibits a maximum drain current of 960 mA/mm,and the reverse gate leakage current is almost 3 orders of magnitude lower than that of reference HEMT.Based on the improved direct-current operation,the NbAlO can be considered to be a potential gate oxide comparable to other dielectric insulators.  相似文献   

7.
The effects of various notch structures on direct current(DC) and radio frequency(RF) performances of AlGaN/GaN high electron mobility transistors(HEMTs) are analyzed.The AlGaN/GaN HEMTs,each with a 0.8-μm gate length,50-μm gate width,and 3-μm source-drain distance in various notch structures at the AlGaN/GaN barrier layer,are manufactured to achieve the desired DC and RF characteristics.The maximum drain current(I_(ds,max)),pinch-off voltage(V_(th)),maximum transconductance(g_m),gate voltage swing(GVS),subthreshold current,gate leakage current,pulsed I-V characteristics,breakdown voltage,cut-off frequency(f_T),and maximum oscillation frequency(f_(max)) are investigated.The results show that the double-notch structure HEMT has a 30% improvement of gate voltage swing,a 42.2% improvement of breakdown voltage,and a 9% improvement of cut-off frequency compared with the conventional HEMT.The notch structure also has a good suppression of the current collapse.  相似文献   

8.
A novel AlGaN/GaN high electron mobility transistor(HEMT) with double buried p-type layers(DBPLs) in the GaN buffer layer and its mechanism are studied.The DBPL AlGaN/GaN HEMT is characterized by two equi-long p-type GaN layers which are buried in the GaN buffer layer under the source side.Under the condition of high-voltage blocking state,two reverse p-n junctions introduced by the buried p-type layers will effectively modulate the surface and bulk electric fields.Meanwhile,the buffer leakage is well suppressed in this structure and both lead to a high breakdown voltage.The simulations show that the breakdown voltage of the DBPL structure can reach above 2000 V from 467 V of the conventional structure with the same gate-drain length of 8μm.  相似文献   

9.
程知群  胡莎  刘军 《中国物理 B》2011,20(3):36106-036106
In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor(HEMT) with an artificial neural network(ANN).The AlGaN/GaN HEMT device structure and its fabrication process are described.The circuit-based Neuro-space mapping(neuro-SM) technique is studied in detail.The EEHEMT model is implemented according to the measurement results of the designed device,which serves as a coarse model.An ANN is proposed to model AlGaN/GaN HEMT based on the coarse model.Its optimization is performed.The simulation results from the model are compared with the measurement results.It is shown that the simulation results obtained from the ANN model of AlGaN/GaN HEMT are more accurate than those obtained from the EEHEMT model.  相似文献   

10.
AlGaN/GaN high electron mobility transistors(HEMTs) were exposed to 1 MeV neutron irradiation at a neutron fluence of 1 × 10 15 cm 2.The dc characteristics of the devices,such as the drain saturation current and the maximum transconductance,decreased after neutron irradiation.The gate leakage currents increased obviously after neutron irradiation.However,the rf characteristics,such as the cut-off frequency and the maximum frequency,were hardly affected by neutron irradiation.The AlGaN/GaN heterojunctions have been employed for the better understanding of the degradation mechanism.It is shown in the Hall measurements and capacitance-voltage tests that the mobility and concentration of two-dimensional electron gas(2DEG) decreased after neutron irradiation.There was no evidence of the full-width at half-maximum of X-ray diffraction(XRD) rocking curve changing after irradiation,so the dislocation was not influenced by neutron irradiation.It is concluded that the point defects induced in AlGaN and GaN by neutron irradiation are the dominant mechanisms responsible for performance degradations of AlGaN/GaN HEMT devices.  相似文献   

11.
We report the realization of an AlGaN/GaN HEMT on silicon (001) substrate with noticeably better transport and electrical characteristics than previously reported. The heterostructure has been grown by molecular beam epitaxy. The 2D electron gas formed at the AlGaN/GaN interface exhibits a sheet carrier density of 8×1012 cm−2 and a Hall mobility of 1800 cm2/V s at room temperature. High electron mobility transistors with a gate length of 4 μm have been processed and DC characteristics have been achieved. A maximum drain current of more than 500 mA/mm and a transconductance gm of 120 mS/mm have been obtained. These results are promising and open the way for making efficient AlGaN/GaN HEMT devices on Si(001).  相似文献   

12.
冯倩  郝跃  岳远征 《物理学报》2008,57(3):1886-1890
在研制AlGaN/GaN HEMT器件的基础上,采用ALD法制备了Al2O3 AlGaN/GaN MOSHEMT器件.通过X射线光电子能谱测试表明在AlGaN/GaN异质结材料上成功淀积了Al2O3薄膜.根据对HEMT和MOSHEMT器件肖特基电容、器件输出以及转移特性的测试进行分析发现:所制备的Al2O3薄膜与AlGaN外延层间界面态密度较小,因而MOSHEMT器件呈现出较 关键词: 2O3')" href="#">Al2O3 ALD GaN MOSHEMT  相似文献   

13.
In this paper,in order to solve the interface-trap issue and enhance the transconductance induced by high-k dielectric in metal-insulator-semiconductor (MIS) high electron mobility transistors (HEMTs),we demonstrate better performances of recessed-gate Al 2 O 3 MIS-HEMTs which are fabricated by Fluorine-based Si 3 N 4 etching and chlorinebased AlGaN etching with three etching times (15 s,17 s and 19 s).The gate leakage current of MIS-HEMT is about three orders of magnitude lower than that of AlGaN/GaN HEMT.Through the recessed-gate etching,the transconductance increases effectively.When the recessed-gate depth is 1.02 nm,the best interface performance with τ it =(0.20-1.59) μs and D it =(0.55-1.08)×10 12 cm 2 ·eV 1 can be obtained.After chlorine-based etching,the interface trap density reduces considerably without generating any new type of trap.The accumulated chlorine ions and the N vacancies in the AlGaN surface caused by the plasma etching can degrade the breakdown and the high frequency performances of devices.By comparing the characteristics of recessed-gate MIS-HEMTs with different etching times,it is found that a low power chlorine-based plasma etching for a short time (15 s in this paper) can enhance the performances of MIS-HEMTs effectively.  相似文献   

14.
郭海君  段宝兴  袁嵩  谢慎隆  杨银堂 《物理学报》2017,66(16):167301-167301
为了优化传统Al GaN/GaN高电子迁移率晶体管(high electron mobility transistors,HEMTs)器件的表面电场,提高击穿电压,本文提出了一种具有部分本征GaN帽层的新型Al GaN/GaN HEMTs器件结构.新型结构通过在Al GaN势垒层顶部、栅电极到漏电极的漂移区之间引入部分本征GaN帽层,由于本征GaN帽层和Al GaN势垒层界面处的极化效应,降低了沟道二维电子气(two dimensional electron gas,2DEG)的浓度,形成了栅边缘低浓度2DEG区域,使得沟道2DEG浓度分区,由均匀分布变为阶梯分布.通过调制沟道2DEG的浓度分布,从而调制了Al GaN/GaN HEMTs器件的表面电场.利用电场调制效应,产生了新的电场峰,且有效降低了栅边缘的高峰电场,Al GaN/GaN HEMTs器件的表面电场分布更加均匀.利用ISE-TCAD软件仿真分析得出:通过设计一定厚度和长度的本征GaN帽层,Al GaN/GaN HEMTs器件的击穿电压从传统结构的427 V提高到新型结构的960 V.由于沟道2DEG浓度减小,沟道电阻增加,使得新型Al GaN/GaN HEMTs器件的最大输出电流减小了9.2%,截止频率几乎保持不变,而最大振荡频率提高了12%.  相似文献   

15.
王欣娟  张金凤  张进城  郝跃 《物理学报》2008,57(5):3171-3175
通过对AlGaN/GaN HEMT器件肖特基栅电流输运机理的研究,在变温下采用I-V法对AlGaN/GaN上的Ni/Au肖特基势垒高度和理想因子进行了计算. 通过对不同电流机理的分立研究,得到了更为准确的势垒高度值b. 通过分析温度在300—550K之间肖特基反向泄漏电流的特性,得出结论:AlGaN材料的表面漏电不是HEMT器件反向泄漏电流的主要来源. 关键词: AlGaN/GaN异质结 肖特基结 理想因子  相似文献   

16.
Off‐state and vertical breakdown characteristics of AlGaN/AlN/GaN high‐electron‐mobility transistors (HEMTs) on high‐resistivity (HR)‐Si substrate were investigated and analysed. Three‐terminal off‐state breakdown (BVgd) was measured as a function of gate–drain spacing (Lgd). The saturation of BVgd with Lgd is because of increased gate leakage current. HEMTs with Lgd = 6 µm exhibited a specific on‐resistance RDS[ON] of 0.45 mΩ cm2. The figure of merit (FOM = BVgd2/RDS[ON]) is as high as 2.0 × 108 V2 Ω–1 cm–2, the highest among the reported values for GaN HEMTs on Si substrate. A vertical breakdown of ~1000 V was observed on 1.2 µm thick buffer GaN/AlN grown on Si substrate. The occurrence of high breakdown voltage is due to the high quality of GaN/AlN buffer layers on Si substrate with reduced threading dislocations which has been confirmed by transmission electron microscopy (TEM). This indicates that the AlGaN/AlN/GaN HEMT with 1.2 µm thick GaN/AlN buffer on Si substrate is promising candidate for high‐power and high‐speed switching device applications. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号