首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new unified strength criterion in the principal stress space has been proposed for use with normal strength concrete (NC) and high strength concrete (HSC) in compressioncompression-tension, compression-tension-tension, triaxial tension, and biaxial stress states. The study covers concrete with strengths ranging from 20 to 130 MPa. The conception of damage Poisson's ratio is defined and the expression for damage Poisson's ratio is determined basically. The failure mechanism of concrete is illustrated, which points out that damage Poisson's ratio is the key to determining the failure of concrete. Furthermore, for the concrete under biaxial stress conditions, the unified strength criterion is simplified and a simplified strength criterion in the form of curves is also proposed. The strength criterion is physically meaningful and easy to calculate, which can be applied to analytic solution and numerical solution of concrete structures.  相似文献   

2.
The mechanical behaviors of shape memory alloy (SMA) wires reinforced smart structure with damage were analyzed through the variational principle, a governing equation for the structure was derived, mathematical expressions for the meso-displacement field, stress-strain field of typical element with damage were presented, and a failure criterion for interface failure between SMA wires and matrix was established under two kinds of actuation which are dead-load and temperature, where the temperature is included in effective free restoring strain. In addition, there are some other composing factors in the failure criterion such as the interface properties, dynamical properties of SMA, initial debonding length L-l etc. The results are significant to understand structural strength self-adapted control and failure mechanism of SMA wires reinforced smart structure with damage.  相似文献   

3.
A new three-dimensional Hoek-Brown strength criterion   总被引:1,自引:0,他引:1  
The Hoek-Brown(HB) strength criterion has been widely applied to the estimation of strength of intact rock and rock mass,while evolving ever since.However,negligence of the effect of the intermediate principal stress still remains in the criterion’s latest version.At the same time,several three-dimensional(3D) HB strength,which can takes into account the influence of the intermediate principal stress,have already been proposed,among which the 3D HB criterion proposed by Zhang and Zhu seems to be the most reasonable one.However,the Zhang 3D HB criterion may have problems with some stress path close to triaxial extension state because of the non-convexity characteristic of its failure surface.In this paper,a new 3D HB strength criterion is presented based on a generalized form of the HB criterion,which also considers the effect of the intermediate principal stress and inherits all the merits of the original version of the HB criterion.In addition,this new criterion can remedy to some extent the shortcomings observed in the Zhang 3D HB criterion.Polyaxial tests for five different rocks from published literatures are used for evaluating this new criterion and comparing it with the Zhang 3D HB criterion.The results show that this new criterion may over-predict or underpredict the polyaxial strength of rocks but the errors are relatively small,and similar results are also found for the Zhang 3D HB criterion,which one is better depends on the type of the rock under estimation.  相似文献   

4.
Experimental results about concrete under sulfate attack are summarized,which include the variation of mass density of samples and velocity of ultrasonic wave propagating in samples.The evolution damage is analyzed in terms of the experimental results,and close attention is paid to the effect of damage evolution on Poisson’s ratio.This study shows that Poisson’s ratio is significantly affected by the concentration of solution and water-cement ratio.Poisson’s ratio of concrete changes very little when the water-cement ratio is selected as 0.6 or 0.8,so that such change may be neglected.If water-cement is 0.4,however,the Poisson’s ratio of the sample significantly changes.When the concrete sample of 0.4 water-cement ratio is immersed in sodium sulfate solution of 8% concentration for 285 days,Poisson’s ratio increase 10.14% compared with its initial value.There exist a sensitive region and a non-sensitive region for the change rate of Poisson’s ratio with respect to corrosion time.The change rate of Poisson’s ratio monotonously decreases with corrosion time in the sensitive region;in the non-sensitive region,the change rate of Poisson’s ratio is almost equal to zero.  相似文献   

5.
<正>A class of plastic-damage models for concrete require an unambiguous definition of cohesion in the yield criteria.For this reason,the Lubliner yield criterion has been adopted by many investigators and the commercial FE program Abaqus.As is well known,this criterion has achieved great success especially in plane stress states.In this paper,we are trying to extend it to triaxial compression stress states.First,a major limitation of the Lubliner criterion is analyzed. Then,a revised version of the Lubliner criterion is proposed,which shows appropriate properties over a wide range of stress states often encountered in engineering structures,and the predicted failure envelopes fit well with experimental data.For the concrete damaged plasticity model in Abaqus,a calibration strategy is suggested for uniformly confined concrete.  相似文献   

6.
7.
The random critical-core model is adapted to investigate the tensile failure mech-anism and hybrid effect of unidirectionally arrayed hybrid composites with alternating low andhigh elongation fibers.By utilizing the model in conjunction with the results of the stress con-centration analysis in which the interfacial damage between fiber and matrix is considered,amicroscopic statistical analysis of both the first failure and ultimate failure of hybrids is per-formed.The variations of the first failure strain,the ultimate failure strain and the hybrid effectas the interfacial shear strength are obtained quantitatively.The concept of the hybrid effect forstrains has been clarified.The present results are compared with available experiment data anda reasonable agreement is found between the analytical predictions and the experimental results.  相似文献   

8.
The critical bifurcation orientation and its corresponding hardening modulus for rock-like geomaterials are derived by considering the effect of stiffness degradation and volumetric dilatancy under the assumption of isotropic damage. The dependency of the localized orientation on the degree of damage and initial Poisson's ratio of rock is examined and the bifurcation behavior of the uniaxial compression sample under the plane-stress condition is compared with that under plane-strain condition. It is shown that the localization orientation angle intimately depends on both the initial Poisson's ratio and degree of damage for the rock sample under the uniaxial compression condition. As the initial Poisson's ratio or degree of damage increases, the orientation angle of the plane on which localization tends to be initiated gets to decrease. At the same time, the localization orientation angle of a rock sample under the plane-stress condition is larger than that under the plane-strain condition.  相似文献   

9.
A novel method combining the time-reversal method(TRM)with wavelet analysis was proposed for damage imaging in mesoscale concrete modeling.The damage was imaged by the convergence of time-reversed wave signals after wavelet analysis.Through numerical study,three concrete models of different damage sizes were built with randomly distributed aggregate particles.The time-reversal process was simulated using the reverse damage-scattered ultrasonic wave signals as excitations recorded by the sensors.Then,the wavelet analysis was employed to extract certain frequency component,which can enhance detection precision and the signalto-noise ratio.The damage imaging showed clearly the location of the defect.The results from experimental testing also demonstrated that this detection technique is an efficient and effective method for damage imaging in mesoscale concrete.  相似文献   

10.
The failure wave has been observed propagating in glass under impact loading since 1991. It is a continuous fracture zone which may be associated with the damage accumulation process during the propagation of shock waves. A progressive fracture model was proposed to describe the failure wave formation and propagation in shocked glass considering its heterogeneous meso-structures. The original and nucleated microcracks will expand along the pores and other defects with concomitant dilation when shock loading is below the Hugoniot Elastic Limit. The governing equation of the failure wave is characterized by inelastic bulk strain with material damage and fracture. And the inelastic bulk strain consists of dilatant strain from nucleation and expansion of microcracks and condensed strain from the collapse of the original pores. Numerical simulation of the free surface velocity was performed and found in good agreement with planar impact experiments on K9 glass at China Academy of Engineering Physics. And the longitudinal, lateral and shear stress histories upon the arrival of the failure wave were predicted, which present the diminished shear strength and lost spall strength in the failed layer.  相似文献   

11.
A three-dimensional discrete element model of the connective type is presented. Moreover, a three- dimensional numerical analysis code, which can carry out the transitional process from connective model (for continuum) to contact model (for non-continuum), is developed for simulating the mechanical process from continuum to non-continuum. The wave propagation process in a concrete block (as continuum) made of cement grout under impact loading is numerically simulated with this code. By comparing its numerical results with those by LS-DYNA, the calculation accuracy of the model and algorithm is proved. Furthermore, the failure process of the concrete block under quasi-static loading is demonstrated, showing the basic dynamic transitional process from continuum to non-continuum. The results of calculation can be displayed by animation. The damage modes are similar to the experimental results. The two numerical examples above prove that our model and its code are powerful and efficient in simulating the dynamic failure problems accompanying the transition from continuum to non-continuum. It also shows that the discrete element method (DEM) will have broad prospects for development and application.  相似文献   

12.
The core mechanism of comminution could be reduced to the breakage of individual particles that occurs through contact with other particles or with the grinding media, or with the solid walls of the mill. When brittle particles are loaded in compression or by impact, substantial tensile stresses are induced within the particles. These tensile stresses are responsible for splitting failure of brittle particles. Since many engineering materials have Poisson‘s ratios very close to 0.3, the influence of Poisson‘s ratio on the tensile strength is neglected in many studies. In this paper, the state of stress in a spherical particle due to two diametrically opposed forces is analyzed theoretically. A simple equation for the tensile stress at the centre of the particle is obtained. It is found reasonable to propose this tensile stress at the instant of failure as the tensile strength of the particle. Moreover, this tensile strength is a function of the Poisson‘s ratio of the material. As the state of stress along the z-axis in an irregular specimen tends to be similar to that in a spherical particle compressed diametrically with the same force, this tensile strength has some validity for irregular particles as well. Therefore, it could be used as the tensile strength for brittle particles in general. The effect of Poisson‘s ratio on the tensile strength is discussed.  相似文献   

13.
<正>This work established a new analytical model based upon the equivalent constraint model(ECM)to constitute an available predictive approach for analyzing the ultimate strength and simulating the stress/strain response of general symmetric laminates subjected to combined loading,by taking into account the effect of matrix cracking.The ECM was adopted to mainly predict the in-plane stiffness reduction of the damaged laminate.Basic consideration that progressive matrix cracking provokes a re-distribution of the stress fields on each lamina within laminates, which greatly deteriorates the stress distributed in the primary load-bearing lamina and leads to the final failure of the laminates,is introduced for the construction of the failure criterion. The effects of lamina properties,lay-up configurations and loading conditions on the behaviors of the laminates were examined in this paper.A comparison of numerical results obtained from the established model and other existed models and published experimental data was presented for different material systems.The theory predictions demonstrated great match with the experimental observations investigated in this study.  相似文献   

14.
A bending beam, subjected to state of plane stress, was chosen to investigate. The determination of the neutral surface of the structure was made, and the calculating formulas of neutral axis, normal stress, shear stress and displacement were derived. It is concluded that, for the elastic bending beam with different tension-compression modulus in the condition of complex stress, the position of the neutral axis is not related with the shear stress, and the analytical solution can be derived by normal stress used as a criterion,improving the multiple cyclic method which determines the position of neutral point by the principal stress. Meanwhile, a comparison is made between the results of the analytical solution and those calculated from the classic mechanics theory, assuming the tension modulus is equal to the compression modulus, and those from the finite element method (FEM) numerical solution. The comparison shows that the analytical solution considers well the effects caused by the condition of different tension and compression modulus. Finally, a calculation correction of the structure with different modulus is proposed to optimize the structure.  相似文献   

15.
A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect,and intermediate principal stress effect. The former two effects can be described by the meridian curves, and the last one mainly depends on the Lode angle dependence function. Among three conventional strength criteria, i.e.Mohr–Coulomb(MC), Hoek–Brown(HB), and Exponent(EP) criteria, the difference between generalized compression and extension strength of EP criterion experience a firstly increase then decrease process, and tends to be zero when hydrostatic pressure is big enough. This is in accordance with intrinsic rock strength characterization. Moreover, the critical hydrostatic pressure I_c corresponding to the maximum difference of between generalized compression and extension strength can be easily adjusted by minimum principal stress influence parameter K. So, the exponent function is a more reasonable meridian curves, which well reflects the hydrostatic pressure effect and is employed to describe the generalized compression and extension strength.Meanwhile, three Lode angle dependence functions of L_(MN),L_(WW), and L_(YMH), which unconditionally satisfy the convexity and differential requirements, are employed to represent the intermediate principal stress effect. Realizing the actual strength surface should be located between the generalized compression and extension surface, new true-triaxial criteria are proposed by combining the two states of EP criterion by Lode angle dependence function with a same lode angle. The proposed new true-triaxial criteria have the same strength parameters as EP criterion. Finally, 14 groups of triaxial test data are employed to validate the proposed criteria. The results show that the three new true-triaxial exponent criteria,especially the Exponent Willam-Warnke criterion(EPWW)criterion, give much lower misfits, which illustrates that the EP criterion and L_(WW) have more reasonable meridian and deviatoric function form, respectively. The proposed new true-triaxial strength criteria can provide theoretical foundation for stability analysis and optimization of support design of rock engineering.  相似文献   

16.
17.
The strain energy density ratio criterion for predicting cracking direction incomposite materials is proposed.The Tsai-Hill criterion and Norris criterion ofcomposite materials are extended to predict the cracking direction in composites.Thethree criteria are used to analyse the crack propagation problem of the unidirectionalfibre composite sheet with various fibre directions.The predicted results are comparedwith those of the existing normal stress ratio criterion and strain energy densitycriterion.  相似文献   

18.
A damage mechanics fatigue life prediction model for the fiber reinforced polymer lamina is established. The stiffness matrix of the lamina is derived by elastic constants of fiber and matrix. Two independent damage degrees of fiber and matrix are introduced to establish constitutive relations with damage. The damage driving forces and damage evolution equations for fiber and matrix are derived respectively. Fatigue tests on 0°and 90°unidirectional laminates are conducted respectively to identify parameters in damage evolution equations of fiber and matrix. The failure criterion of the lamina is presented. Finally, the life prediction model for lamina is proposed.  相似文献   

19.
Based on the constancy hypothesis of material volume, the circumferential and radial stresses of a cylinder specimen are analyzed when the cylinder is subject to a loading along the axial direction. The circumferential and radial stress distribution is a power function of radius parameter when the constitutive relation of specimen material is orthotropic. The stress distribution is a quadratic function of radius parameter for transversely isotropic material. Along the cylinder axial line, the circumferential and radial stresses are maximum and equal to each other. In the circumference boundary surface, the radial stress is zero and the circumferential stress value is minimal. The failure theory of maximum tensile circumferential strain is applied to calculate the critical axial loading. The circumference-boundary-layer failure criterion of orthotropic cylinders is described with the Hill-Tsai strength theory. The obtained strength theory is related to axial stress and mechanical properties of specimen material and to the specimen axialdeformation strain rate and the change rate of strain rate.  相似文献   

20.
Widely distributed in natural deposits,the overconsolidated(OC)clays have attracted extensive experimental investigations on their mechanical behaviors,especially in the 1960s and 1970s.Based on these results,numerous constitutive models have also been established.These models generally fall into two categories:one based on the classical plasticity theory and the other the bounding surface(BS)plasticity theory,with the latter being more popular and successful.The BS concept and the subloading surface(SS)concept are the two major BS plasticity theories.The features of these two concepts and the representative models based on them are introduced,respectively.The unified hardening(UH)model for OC clays is also based on the BS plasticity theory but distinguishes itself from other models by the integration of the reference yield surface,unified hardening parameter,potential failure stress ratio,arid transformed stress tensor.Modification is made to the Hvorslev envelop employed in the UH model to improve its capability of describing the behaviors of clays with extremely high overconsolidation ratio in this paper.The comparison among the BS model,SS model,and UH model is performed.Evidence shows that all these three models can characterize the fundamental behaviors of OC clays,such as the stress dilatancy,strain softening and attainment of the critical state.The UH model with the revised Hvorslev envelop has the fewest parameters which are identical to those of the modified Cam-Clay model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号