首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文利用有限元仿真给出了一种修正方法,并用数值仿真和试验验证了该方法的可靠性。研究表明:散体材料SHPB被动围压试验中,试样厚度远小于厚壁圆筒长度时,端部效应会导致厚壁圆筒不均匀凸出变形,计算材料的体应力-应变关系不能将厚壁圆筒应力状态简化为平面应力问题;厚壁圆筒处于弹性状态下,通过厚壁圆筒理论计算出的径向力与真实径向力存在一定比例关系,在一定范围内,折算系数与试样实时厚度呈二次函数关系。  相似文献   

2.
Summary A numerical method based on the assumption of a generalized plane strain (GPS) state is presented for calculating the stress and strength ratio distributions of the rotating composite flywheel rotor of varying material properties in the radial direction. The rotor is divided into many rings and each ring has constant material properties. All the rings are assumed to expand and have the same axial strain. A three-dimensional finite element method is then used to verify the accuracy of the present method. This method gives a better solution for most of the rotors than other methods of a plane stress or plane strain state. After verification, the effects of material properties on the total stored energy (TSE) of the composite flywheel rotor are investigated. For this purpose, the material properties of the rotor, i.e. circumferential and radial Young's moduli, ply angles and mass densities are expressed by power functions of the radius, and the rotor is analyzed. The analysis shows that TSE can be most effectively increased by changing the circumferential Young's moduli along the radius, which amounts to over 300% of TSE of the constant material properties. The variation of ply angles along the radius can increase TSE by about 30% at most. The method of changing the mass densities along the radius could be also effective but its effects are not so noticeable in the rotor where the circumferential stiffness is properly arranged. Received 7 June 1999; accepted for publication 15 January 2000  相似文献   

3.
A unified analysis is presented for the elastic response of a pressurized cylindrically anisotropic hollow disk under assumed conditions of plane stress, or a hollow cylinder under plane strain conditions, and a spherically anisotropic hollow sphere, made of material which is nonuniform in the radial direction according to the power law relationship. The solution for a cylinder under generalized plane strain is also presented. Two parameters play a prominent role in the analysis: the material nonuniformity parameter m, and the parameter ?? which accounts for the combined effects of material anisotropy, represented by the specified parameters (??, ??, ??), and material nonuniformity, represented by the parameter m. The radial and circumferential stresses are the linear combinations of two power functions of the radial coordinate, whose exponents (n 1 and n 2) depend on the parameters m and ??. New light is added to the stress amplification and shielding under combined effects of curvilinear anisotropy and radial nonuniformity. Different loading combinations are considered, including the equal pressure at both boundaries, and the uniform pressure at the inner or the outer boundary. While the stress state for the equal pressure loading is uniform in the case of isotropic uniform material (m=0, ??=1), and for one particular radially nonuniform and anisotropic material, it is strongly nonuniform for a general anisotropic or nonuniform material. If the aspect ratio of the inner and outer radii decreases (small hole in a large disk/cylinder or sphere), the magnitude of the circumferential stress at the inner radius increases for n 1>0 (stress amplification), and decreases for n 1<0 (stress shielding). Both can be achieved by various combinations of the material parameters m, ??, ??, and ??. While the stress amplification in the case of a pressurized external boundary occurs readily, it occurs only exceptionally in the case of a pressurized internal boundary. The effects of material parameters on the displacement response are also analyzed. The approximate character of the plane stress solution of a pressurized thin disk is discussed and the results are compared with those obtained by numerical solution of the exact three-dimensional disk model.  相似文献   

4.
The Dugdale hypothesis is adapted to the problem of an external circumferential crack in a stretched cylinder. The lateral surface of the cylinder is stress free and restrained from radial displacements. An external circumferential edge crack in the cylinder which is considered elastic-perfectly plastic is envisaged with the assumption that the plastic zone forms a very thin in-plane layer surrounding the crack. The solution of the problem is reduced to the solution of dual Dini series which, in turn, is reduced to a Fredholm integral equation of the second kind. Solving this integral equation numerically and using the boundedness of the axial stress, the size of the plastic zone correction is obtained.  相似文献   

5.
In this paper transient thermal stresses in a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) based on classical theory of thermoelasticity are considered. The volume fraction distribution of materials, geometry and thermal load are assumed to be axisymmetric but not uniform along the axial direction. The finite element method with graded material properties within each element is used to model the structure. Temperature, displacements and stress distributions through the cylinder at different times are investigated. Also the effects of variation of material distribution in two radial and axial directions on the thermal stress distribution and time responses are studied. The achieved results show that using 2D-FGM leads to a more flexible design so that time responses of structure, maximum amplitude of stresses and uniformity of stress distributions can be modified to a required manner by selecting suitable material distribution profiles in two directions.  相似文献   

6.
为了研究轴向应力和渗透力共同作用下软化围岩的应力与位移的变化及分布规律. 基于摩尔-库伦屈服准则及应力-应变软化模型并考虑轴向应力和渗透力的共同作用,将整个塑性区分为有限个同心圆环,以弹塑性交界面处的应力、应变为初始值,并采用微小径向应力增量逐步求出各个圆环上的应力应变及塑性区半径,据此重构了考虑渗透力和轴向力共同作用下软化围岩应力应变特性的逐步求解方法. 利用该方法,推导出软化围岩应力应变的解. 计算结果表明:在考虑轴向应力作用下,塑性区半径和隧道围岩位移都随着渗透力的增加而有所减小;当轴向应力为最小主应力时,渗透力的影响更为显著. 这说明渗透力的存在对于隧道围岩的应力应变分布以及塑性半径和围岩的位移有不可忽略的影响.  相似文献   

7.
We find closed-form solutions for axisymmetric plane strain deformations of a functionally graded circular cylinder comprised of an isotropic and incompressible second-order elastic material with moduli varying only in the radial direction. Cylinder's inner and outer surfaces are loaded by hydrostatic pressures. These solutions are specialized to cases where only one of the two surfaces is loaded. It is found that for a linear through-the-thickness variation of the elastic moduli, the hoop stress for the first-order solution (or in a cylinder comprised of a linear elastic material) is a constant but that for the second-order solution varies through the thickness. The radial displacement, the radial stress and the hoop stress do not depend upon the second-order elastic constant but the hydrostatic pressure and hence the axial stress depends upon it. When the two elastic moduli vary as the radius raised to the power two or four, the radial and the hoop stresses in an infinite space with a pressurized cylindrical cavity equal the pressure in the cavity. For an affine variation of the elastic moduli, the hoop stress in an internally loaded cylinder made of a linear elastic isotropic and incompressible material at the point is the same as that in a homogeneous cylinder. Here Rin and Rou equal, respectively, the inner and the outer radius of the undeformed cylinder and R the radial coordinate of a point in the unstressed reference configuration.  相似文献   

8.
This paper contains an analysis of the stress distribution in a long circular cylinder of isotropic elastic material with a circumferential edge crack when it is deformed by the application of a uniform shearing stress. The crack with its center on the axis of the cylinder lies on the plane perpendicular to that axis, and the cylindrical surface is stress-free. By making a suitable representation of the stress function for the problem, the problem is reduced to the solution of a pair of singular integral equations. This pair of singular integral equations is solved numerically, and the stress intensity factor due to the effect of the crack size is tabulated.  相似文献   

9.
The equation of stress intensity factors(SIF) of internally pressurized thick- walled cylinder was used as the reference case.SIF equation of rotating thick-walled cylinder containing a radial crack along the internal bore was presented in weight function method.The weight fumction formulas were worked out and can be used for all kinds of depth of cracks,rotating speed,material,size of thick-walled cylinder to calculate the stress intensity factors.The results indicated the validity and effectiveness of these formulas.Meanwhile,the rules of the stress intensity factors in rotating thick-walled cylinder with the change of crack depths and the ratio of outer radius to inner radius were studied.The studies are valuable to engineering application.  相似文献   

10.
A practical theory for swaging bored holes within plates and cylinders is proposed which can take into account work-hardening in the presence of small plastic strains based upon equivalent stress-strain data. With the appropriate choice of yield function, this theory applies to the swaging of both thin and thick plates under respective plane stress and plane strain conditions. The theory can be adapted further to the autofrettage of open and closed-ended, thick-walled cylinders where similar plane deformations conditions apply. Here swaging refers to the practice in which an oversized plug or sphere is forced into the bore thereby expanding it permanently to leave a residual circumferential compression in the bore material upon removal of the expanding tool. A similar effect results from applying an initial over-pressure to a long thick-walled cylinder in an autofrettage process. Both treatments are employed to enhance the fatigue resistance when the service loading upon the disc or cylinder amounts to a cyclic, circumferential tension within its bore. Strain gauges bonded to the entry face of the plate are used to monitor the circumferential and radial strain distributions both during and after the swaging process. Experimental results presented for swaging of thin and thin annular discs in aluminium alloy show that the measured residual strain distributions concord with the theory for large discs with a 10/1 diameter ratio. The agreement is less satisfactory with the loss in axial symmetry for parallel-sided lugs with a width to hole diameter ratio of 4/1.  相似文献   

11.
本文以实际岩体工程为背景,利用WDT-1500 仪器开展了轴向、侧向同时卸荷条件下砂岩的三轴试验. 结果表明:轴、侧向同卸荷这种卸荷路径下,砂岩试样破坏时并没有出现应力峰值,为了定义试样的破坏强度,将最大与最小主应力差随最小主应力的变化关系曲线上应力跌落的拐点处的应力值定义为破坏强度. 砂岩变形初始段发生应力跌落和轴向应变回弹,破坏前无明显的弹性和屈服阶段;试验的过程中,砂岩的侧向变形明显大于轴向变形,其体积应变一直处于膨胀状态;相对于砂岩的常规三轴试验结果,试样破坏时的强度在轴向、侧向同时卸荷条件下有所降低. 初始轴压和初始围压对试样的力学特征有十分显著的影响,但围压的卸荷速率却并不显著. 砂岩的破坏特征主要是以张-拉为主的混合张剪的破坏.   相似文献   

12.
The elastic analysis of a pressurized functionally graded material (FGM) annulus or tube is made in this paper. Different from existing studies, this study deals with an axisymmetrical FGM hollow cylinder or disk with arbitrarily varying material properties. A simple and efficient approach is suggested, which reduces the associated problem to solving a Fredholm integral equation. The resulting equation is approximately solved by expanding the solution as series of Legendre polynomials. The stresses and displacements can be represented in terms of the solution to the equation. For radius-dependent Young’s modulus, numerical results of the distribution of the radial and circumferential stresses are presented graphically. Our results indicate that change in the gradient of the FGM tube does not produce a substantial variation of the radial stress, but strongly affects the distribution of the hoop stress. In particular, the hoop stress may reach its maximum at an internal position or at the outer surface when the tube is internally pressurized. The results obtained are helpful in designing FGM cylindrical vessels to prevent failure.   相似文献   

13.
In this paper, natural frequencies characteristics of a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) based on three-dimensional equations of elasticity is considered. The axisymmetric conditions are assumed for the 2D-FGM cylinder. The material properties of the cylinder are varied in the radial and axial directions with power law functions. Effects of volume fraction distribution and FGM configuration on the natural frequencies of a simply supported cylinder are analyzed. Also, the effects of length and thickness of the cylinder are considered for different material distribution profiles. Three-dimensional equations of motion are used and the eigen value problem is developed based on direct variational method. Finite element method with graded material characteristics within each element of the structure is used for solution. The study shows that the 2D-FGM cylinder exhibit interesting frequency characteristics when the constituent volume fractions and its configuration are varied.  相似文献   

14.
This paper contains an analysis of the stress distribution in a long circular cylinder of elastic material containing a penny-shaped crack when it is deformed by the application of a uniform shearing stress. The crack with its center on the axis of the cylinder lies on the plane perpendicular to that axis, and the cylindrical surface is stress-free. By making a suitable representation of the stress function for the problem, the problem is reduced to the solution of a pair of Fredholm integral equations of second kind. These are solved numerically, and the percentage increase in the stress intensity factor due to the effect of the finite radius of the cylinder is presented in graphical form for various proximity ratios.  相似文献   

15.
A semi-empirical model for unsteady axial forces is developed to predict the spectral features of the force generated by the flow over the end-caps on a finite-length, right circular cylinder in cross-flow. In general, the model consists of two parts: the spatial variation of r.m.s. wall pressure on the cylinder end-caps, and the correlation lengths and areas, which describe the spatial extent of the correlation of the unsteady wall pressures. Experiments were conducted in a low-noise wind tunnel as a function of cylinder diameter Reynolds number (19 200<Re<32 000) and the Strouhal number (0·05<St<3·33) to measure the statistics of the unsteady wall pressures on a model cylinder. These results are incorporated into the theoretical models, and prediction of the spectral characteristics of the axial force are made. The r.m.s. wall pressures on the end-caps are found to have the largest amplitude at circumferential locations (from the forward stagnation point) in the 90–120° range. The high levels at these locations are attributed to reattachment of the separated flow over the end-cap. The radial and circumferential correlation areas have a maximum value at St=0·21. Due to the 3-D flow over the end-caps, the radial correlation areas are found to depend on the circumferential measurement reference location, and the circumferential correlation lengths are found to depend on the radial measurement location. The unsteady axial force predictions using the model show a very broad spectral character.  相似文献   

16.
The stress distribution in a pressurized elastomer confined by a hollow cylinder is of interest in various applications of material testing and manufacturing. A relatively accurate closed form solution for the pressure distribution inside an elastomer confined by a rigid hollow cylinder was presented by Yu et al. (2001). But in many practical applications the assumption of a rigid hollow cylinder is not appropriate, because the cylinder deformations have a significant influence on the stresses inside the elastomer. Thus in this paper a solution for an elastomer confined by a deformable hollow cylinder is derived. Both axial and radial deformations of the hollow cylinder are taken into account, while the bending stiffness of the cylinder wall is neglected, i.e. the cylinder wall is treated according to the membrane theory. The accuracy of the proposed closed form solution is verified by a parametric finite element simulation.  相似文献   

17.
自体静脉是病变动脉管段常用的替代物。移植后因承受压力急剧升高引起的静脉管壁应力改变是影响移植手术的主要因素之一。为了比较移植前(静脉压作用下)和移植后(动脉压作用下)静脉管壁的周向应力分布,本文通过检测一定轴向伸长比条件下静脉管的p(压力)——V(容积)试验数据,利用3参数的应变能密度函数对实验数据进行拟合,进而求得静脉管壁的残余应力和沿血管壁的周向应力分布。对狗的股静脉和颈静脉的分析结果表明,在动脉压作用下静脉管壁周向应力将急剧增大。与处于静脉压环境相比,处于动脉压环境中的颈静脉管周向应力将增大差不多2个数量级。计算结果还显示,静脉管壁残余应力的数值虽然比动脉管壁的相应值小很多,但是与动脉管相同,血管壁残余应力依然对静脉管壁上的周向应力分布影响显著,残余应力的存在将大大削弱在静脉管内壁处的周向应力集中,使周向应力沿静脉管壁厚的变化梯度明显减小。  相似文献   

18.
This work presents a two-dimensional stress analysis for elastic solid cylinders subjected to combined loading. The loading is generally formed with a number of concentrated and partially distributed forces all applied radially on the outer surface. The distributed forces cause pressures with non-uniform intensity along the circumferential direction. The cylinder is assumed to be long so that a state of plane-strain is valid. To obtain the stress distribution for the problem of partially distributed forces a new approach is followed first introduced in this paper. It is based on the expressions formed after using the theory of simple radial stress distribution when point-forces are applied on the cylinder and leads to the solution after direct integration. The total stresses due to both concentrated and distributed forces are obtained using the method of superposition. Apart from its simplified formulation, this general solution is always preferable since it proved to have a great advantage. As a result of not containing Fourier series, it eliminates some problems of convergence of the series at the boundaries that appear due to the Gibbs phenomena when the boundary conditions are a discontinuous function. Numerical results are presented for some interesting cases of loading conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The three-dimensional elasticity solution for static analysis of a functionally graded material (FGM) cylindrical panel with simply supported edges is developed. The modulus of elasticity varies continuously throughout the thickness direction in the form of an exponential function. The panel is bonded with piezoelectric layers. Using Fourier series expansions in the axial and circumferential directions, the state equations are derived. The stress, displacement and electric potential distributions are obtained by solving these state equations. The influences of the material gradient index, applied voltage, and radius to thickness ratio on the static behavior of FGM shell are also studied.  相似文献   

20.
研究了由径向横观各向同性不可压缩的neo-Hookean材料组成的圆柱形管在翻转后的有限变形问题。利用材料的不可压缩条件和半逆解法对相应的数学模型进行求解,并根据边界条件得到了翻转后的圆柱形管的内半径以及轴向伸长率应满足的非线性方程组。通过数值算例讨论了材料参数和结构参数对翻转后圆柱形管的内半径以及轴向伸长率变化的影响。结果表明:初始厚度对翻转后圆柱形管的内半径与轴向伸长率没有本质上的影响;而径向各向异性参数却有本质上的影响,特别是在轴向伸长率方面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号