首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Copper-nickel bimetallic nanoparticles decorated on carboxylated multi-walled carbon nanotubes (Cu/Ni/CMWCNTs)were prepared by using a simple one-pot solvothermal method,which was then employed to construct a highly sensitive non-enzymatic glucose sensor. The modified electrode showed high sensitivity and stability in glucose detection,which was mainly attributed to the synergistic effect of the compact copper-nickel nanocomposite and carboxylated multi-walled carbon nanotubes that possessing high specific surface area to increase the number of active sites and to improve the electrocatalytic activity of the modified electrode. The phase structure and morphology of the material were characterized by X-ray diffraction and scanning electron microscope; the electrochemical performance of the sensor was studied by cyclic voltammetry and chronoamperometry. The sensor had a sensitivity of 1949.1 μµA·L/(mmol·cm2)for glucose detection in the linear range of 1.0-8000 μµmol/L at a potential of 0.55 V,and the detection limit was 0.2 μµmol/L. The sensor was also applied to measure the concentration of glucose in serum samples. The developed nanocomposites sensor has the potential prospect to monitor blood glucose. © 2023, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

2.
A novel and highly sensitive colorimetric sensor array was developed for the detection and identification of breath volatile organic compounds(VOCs) of patients with lung cancer.Employing dimeric metalloporphyrins,metallosalphen complexes,and chemically responsive dyes as the sensing elements,the developed sensor array of artificial nose shows a unique pattern of colorific changes upon its exposure to eight less-reactive VOCs and their mixture gas at a concentration of 735 nmol/L within 3 min.Potential of quantitative analysis of VOCs samples was proved.A good linear relationship of 490-3675 nmol/L was obtained for benzene vapor with a detection limit of 49 nmol/L(S/N=3).Data analysis was carried out by Hierarchical cluster analysis(HCA) and principal component analysis(PCA).Each category of breath VOCs clusters together in the PCA score plot.No errors in classification by HCA were observed in 45 trials.Additionaly,the colorimetric sensor array showed good reproducibility under the cyclic sensing experiments.These results demonstrate that the developed colorimetric artificial nose system is an excellent sensing platform for the identification and quantitative analysis of breath VOCs of patients with lung cancer.  相似文献   

3.
A new detection method for L-Dopa based on paper chips was established. The L-Cys-AuNPs were characterized by their size, zeta potential, and UV-visible absorption spectra. The system had the high selectivity for the colorimetric detection of L-Dopa with the color changing from red to blue. The results were recorded using a common cell phone and subsequently analyzed using Photoshop software. A ratiometric color intensity method was designed for the quantification analysis. The ratio of color intensity at red channel and blue channel (R / B) increases linearly with L-Dopa concentration in the range of 5 to 80 μmol / L (R = 0. 9944), with the limit of detection of 4 μmol / L. The spiked recoveries of samples were 98%-102%. The RSDs of inter-day and intraday were 3. 3% and 3. 8%, respectively. Real samples were detected, and the error between the determination and the labeled value was within 5%. The method can be used to detect L-Dopa in real samples. © 2022, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

4.
唐明宇袁若  柴雅琴 《中国化学》2006,24(11):1575-1580
The third generation amperometric biosensor for the determination of hydrogen peroxide (H2O2) has been described. For the fabrication of biosensor, o-aminobenzoic acid (oABA) was first electropolymerized on the surface of platinum (Pt) electrode as an electrostatic repulsion layer to reject interferences. Horseradish peroxidase (HRP) absorbed by nano-scaled particulate gold (nano-Au) was immobilized on the electrode modified with polymerized o-aminobenzoic acid (poABA) with L-cysteine as a linker to prepare a biosensor for the detection of H2O2. Amperometric detection of H2O2 was realized at a potential of +20 mV versus SCE. The resulting biosensor exhibited fast response, excellent reproducibility and sensibility, expanded linear range and low interferences. Temperature and pH dependence and stability of the sensor were investigated. The optimal sensor gave a linear response in the range of 2.99×10^-6 to 3.55×10^-3 mol·L^-1 to H2O2 with a sensibility of 0.0177 A·L^-1·mol^-1 and a detection limit (S/N = 3) of 4.3×10^-7 mol·L^-1. The biosensor demonstrated a 95% response within less than 10 s.  相似文献   

5.
An electrochemical sensor for doxycycline hyclate(DC)detection with high sensitivity and good selectivity is reported.The sensor was fabricated by electro-polymerization of molecularly imprinted polymers(MIPs)in the presence of DC onto multi-walled carbon nanotubes modified glassy carbon electrode(MWCNTs/GCE).The MWCNTs can significantly increase the current response of the sensor,leading to enhanced sensitivity.The MIPs provide selective recognition sites for DC detection.The experimental parameters,such as the polymer monomer concentration,supporting electrolyte pH,the time for electro-polymerization and the incubation time of the sensor with DC were optimized.Under optimized experimental conditions,the sensor displayed a linear range of 0.05μmol/L-0.5μmol/L towards DC detection,with the detection limit of 1.3×10^-2μmol/L.The sensor was successfully applied for recovery test of DC in human serum samples.  相似文献   

6.
A new convenient colorimetric sensor for fructose based on anti-aggregation of citrate-capped gold nanoparticles(Au NPs) is presented. 4-Mercaptophenylboronic acid(MPBA) induces the aggregation of Au NPs, leading to a color change from red to blue. Fructose as a potent competitor has strong affinity for MPBA and a borate ester is formed between MPBA and fructose. There is an obvious color change from blue to red with increasing the concentration of fructose. The anti-aggregation effect of fructose on Au NPs was seen by the naked eye and monitored by UV–vis spectra. Our results showed that the absorbance ratio(A_(519)/A_(640)) was linear with fructose concentration in the range of 0.032–0.96 μmol/L(R~2= 0.996), with a low detection limit of 0.01 μmol/L(S/N = 3). Notably, a highly selective recognition of fructose was shown against other monosaccharide and disaccharide(glucose, mannose, galactose,lactose and saccharose). With anti-aggregation assays higher selectivity is achievable. The results of this work provide a rapid method for evaluating the quantitative analysis of fructose in human plasma at physiologically meaningful concentrations and at neutral pH. The proposed procedure can be used as an efficient method for the precise and accurate determination of fructose.  相似文献   

7.
黄小梅  邓祥  邢浪漫  陈伟  孙莉  朱晓玉 《应用化学》2022,39(12):1891-1902
CuCo-MOF nanofibers are synthesized by one-step solvent blending process at room temperature. Then CuCo-MOF nanofibers are used as the precursors,carbon nanosheets(Cu(Ⅱ)Co(Ⅱ)@C)uniformly loaded with nano-sized copper oxide and cobalt oxide are obtained by calcination at high temperature in air. Cu(Ⅱ)Co(Ⅱ)@C is modified on the glassy carbon electrode to directly catalyze glucose in alkaline solution. Because CuO and CoO are uniformly and firmly embedded on the carbon nanosheets,the agglomeration of catalyst is prevented,which greatly improves the specific surface area,and increases the catalytic active site. Meanwhile,due to the synergistic effect of copper and cobalt bimetals in the carbon nanosheet material,the enzyme free glucose sensor has excellent electrical conductivity and excellent catalytic performance. The detection range of the non-enzymatic electrochemical glucose sensors for glucose is 0. 03 µμmol/L~13. 6 mmol/L, the detection limit is 0. 01 µμmol/L(S/N=3),and the sensitivity is 10. 56 mA·L/(cm2·mmol). In addition, the non-enzyme sensor also has good anti-interference and high stability. © 2022, Science Press (China). All rights reserved.  相似文献   

8.
Molecularly imprinted polymer(MIP) films for hemoglobin detection were prepared onto the Au/Cr coated surface plasmon resonance(SPR) sensor chips by the in situ electropolymerization of 3-aminophenylboronic acid(3-APBA).The formation of the films and rebinding processes of hemoglobin were monitored by in situ electrochemical-SPR(EC-SPR) spectroscopy,with allowed real-time observation of the simultaneous changes in electrochemical and optical properties of the films.Scanning electron microscopy(SEM) and atomic force microscopy(AFM)were used to characterize the surface morphologies of the MIP films.The effects of pH,ion strength,different metal ions on rebinding Hb,the specific binding and the selective recognition were investigated.The results obtained with the molecular imprinted SPR chips indicate a good adsorption of Hb in a range of 0.0005-5 mg/mL in 0.05 mol/L sodium phosphate buffer at pH=7.0.A linear calibration curve(R2=0.94) of the SPR sensor for Hb detection was obtained in a range of 0.05-5 mg/mL.The detection limit for hemoglobin by this method was 0.000435 mg/mL(S/N=3).Interference studies indicate that the MIP films have a good selectivity compared with the referenced proteins.The stability of the sensor was also established.Results indicate that the SPR sensor chip keeps 87.6% of its original response after 14 d of storage under dry and ambient conditions.  相似文献   

9.
The liquid membrane oscillation of a novel water (aqueous tetradecyl trimethyl ammoniumbromide, TTAB and alcohol solution)/oil (picric acid in chloroform solution)/water (aqueous glucose solution) system was investigated. By using homemade device, the curves of various liquid membranes oscillation with different concentration of TTAB and picric acid, types of alcohol and other organic solvents at different temperature were measured. The results show that the water (aqueous 7 mmol/L of TTAB and 0.5 mol/L of n-propanol solution)/oil (0.5 mmol/L of picric acid in chloroform solution)/water (aqueous glucose solution) system performed sustained and stable oscillation at 30 ℃. And the novel system can recognise added amino acid.  相似文献   

10.
The negatively charged (at pH 8.2) glucose oxidase (GOx, pI ca. 4.2) was assembled onto the surface of single-walled carbon nanotubes (SWNT), which was covered (or wrapped) by a layer of positively charged polyelectrolyte poly(dimethyldiallylammonium chloride) (PDDA), via the electrostatic interaction forming GOx-PDDASWNT nanocomposites. Fourier transform infrared (FTIR), UV-Vis and electrochemical impedance spectroscopy (EIS) were used to characterize the growth processes of the nanocomposites. The results indicated that GOx retained its native secondary conformational structure after it was immobilized on the surface of PDDA-SWNT. A biosensor (Nafion-GOx-PDDA-SWNT/GC) was developed by immobilization of GOx-PDDA-SWNT nanocomposites on the surface of glassy carbon (GC) electrode using Nafion (5%) as a binder. The biosensor showed the electrocatalytic activity toward the oxidation of glucose under the presence of ferrocene monocarboxylic acid (FcM) as an electroactive mediator with a good stability, reproducibility and higher biological affinity. Under an optimal condition, the biosensor could be used to detection of glucose, presenting a typical characteristic of Michaelis-Menten kinetics with the apparent Michaelis-Menten constant of KM^app ca. 4.5 mmol/L, with a linear range of the concentration of glucose from 0.5 to 5.5 mmol/L (with correlation coefficient of 0.999) and the detection limit of ca. 83 μmol/L (at a signal-to-noise ratio of 3). Thus the biosensor was useful in sensing the glucose concentration in serum since the normal glucose concentration in blood serum was around 4.6 mmol/L. The facile procedure of immobilizing GOx used in present work would promote the developments of electrochemical research for enzymes (proteins), biosensors, biofuel cells and other bioelectrochemical devices.  相似文献   

11.
The facile preparation of Ag NPs/C via a one-pot strategy was carried out by microwave treatment of a mixed aqueous solution of AgNO3 and glucose at 180℃ for 20 min without the presence of extra reducing agent. The as-synthesized Ag NPs/C showed high catalytic performance toward the reduction of H2O2. The H2O2 sensor constructed with as-synthesized Ag NPs/C exhibited a short amperometric response time of less than 2 s. The linear range was approximately (0.1-50) mmol/L(r=0.997), and the detection limit was approximately 3.3 μmol/L at a signal-to-noise ratio of 3. A glucose biosensor was fabricated by immobilizing glucose oxidase onto Ag NPs/C- modified glassy carbon electrode to detect glucose. The glucose sensor had a wide linear response range of 2-22 mmol/L(r=0.999) and a detection limit of 190 μmol/L.  相似文献   

12.
通过罗丹明B与乙二胺反应生成的中间体合成了一例可以对铜离子进行比色检测的探针R-Cu.R-Cu可以实现对在HEPES(5 mmol/L;pH 7.4)溶液中Cu2+的比色可视化识别,加入Cu2+后,R-Cu的吸收明显增强,呈现出罗丹明B的紫红色.探针对Cu2+具有较高的选择性和灵敏性,对其他常见的金属离子具有较强的抗干扰能力.该探针可以在较宽的特别是近中性pH环境下有效检测Cu2+,最低检出限为2.70×10?7 mol/L.  相似文献   

13.
A simple, fast, precise and eco-friendly method, based on ion chromatography (IC) with a suppressed conductivity detector, was proposed for the determination of benzoic acid (BA) inmilk in this paper. The chromatographic separation was accomplished by using an anion exchange column eluted with 3.2 μmol/L aqueous Na2CO3 and 1.0 mmol/L aqueous NaHCO3 at a flow-rate of 0.7 mL/min. Themethod validation experiment provided excellent results with respect to linearity (correlation coefficient up to 0.9997), limit of detection (0.1 μg/L), recovery values (ranging from 88.0% to 93.0%) and relative standard deviation (RSD) (below 2.2%, n = 7).  相似文献   

14.
A voltammetric paracetamol sensor based on molecularly imprinted polymeric (MIP) micelles was prepared by direct electrodeposition. The MIP micelles were prepared via macromolecule self‐assembly of an amphiphilic photocrosslinkable copolymer using paracetamol as the template molecule. The resultant molecularly imprinted polymeric micelles swelled with increasing pH, and the disassociation of the micelles occurred at pH above approximately 7.4. A robust MIP film with good solvent resistance was formed on the electrode surface by anodic electrodeposition of the MIP micelles and subsequent photocrosslinking, resulting in the fabrication of a MIP electrochemical sensor for detecting paracetamol. The resultant sensor showed good response and selectivity towards paracetamol. In addition, a wide linear range from 0.01 mmol/L to 8 mmol/L and a low detection limit of 1×10?6 mol/L for paracetamol detection was demonstrated based on this sensor. The MIP sensor also showed good stability and reversibility which was applied to determine paracetamol commercial tablets.  相似文献   

15.
以二氧化钛纳米管阵列(TNTs)为基底,利用脉冲电沉积的方法将Ni纳米粒子沉积在TNTs管内,通过循环伏安法将Ni转化为铁氰化镍(NiHCF),构造了新型的非酶型葡萄糖生物传感器(NiHCF/TNTs修饰电极)。在优化的实验条件下,传感电极的灵敏度为663μA/(mmol cm2);响应电流与葡萄糖浓度在1~23mmol/L范围内呈现良好的线性关系。在低浓度检测下,线性范围为2×10-3~1.0 mmol/L;检出限为0.5μmol/L。本传感电极具有灵敏度高、稳定性好和抗干扰能力强等特点。  相似文献   

16.
利用纳米金(Au NPs)与还原氧化石墨烯(rGO)复合纳米材料制备了葡萄糖氧化酶生物传感器并用于饮料中葡萄糖含量的检测。将壳聚糖作为还原剂及稳定剂,通过一步法合成了Au NPs-rGO复合材料,并通过物理吸附固定葡萄糖氧化酶(GOx)来制作GOx生物传感器。该传感器在磷酸盐缓冲溶液(0.1 mol/L,p H6.0)中,-0.45 V(vs.Ag/Ag Cl)电位下电流法检测葡萄糖含量,线性检测范围为0.01~0.88 mmol/L,灵敏度为22.54μA·mmol-1·L·cm-2,检出限为1.01μmol/L,且表观米氏常数为0.497 mmol/L。该传感器用于多种饮料中葡萄糖含量的直接检测,结果满意。  相似文献   

17.
提出利用对肼基苯磺酸作为糖的衍生试剂,以实现快速的毛细管电泳分离与检测.详细研究了影响衍生反应的诸多因素以及衍生产物的毛细管电泳分离条件.结果表明,本方法可以在温和条件下实现快速反应(10min),200nm紫外检测下葡萄糖的最低检出量可达17.6fmol,检出浓度3.6μmol/L.在100mmol/LH3BO3(pH=10.24)体系中实现了9种单糖和二糖的高效分离.  相似文献   

18.
石鑫  刘传志  宫平  李伟  侯玥 《应用化学》2019,36(7):847-854
采用次血红素六肽(DhHP-6)催化H2O2氧化4-氨基安替吡啉-氯代苯酚显色体系,建立了测定H2O2和葡萄糖的方法。 研究了pH值、底物浓度和DhHP-6浓度对实验的影响,检测了比色方法的反应线性、稳定性、相关性和回收率。 在最佳反应条件下,DhHP-6在不同时间及温度条件下,活性要优于过氧化物酶(POD);DhHP-6催化H2O2 的米氏常数(Km)和最大反应速率(vmax)分别为0.171 mmo/L和4.22×10-6 mol/s;H2O2响应的线性范围为0.39~25.0 mmol/L;高、中、低 3水平测定的变异系数(CV)和加标回收率分别在1.29%~2.16%和94.5%~101.1%之间;与葡萄糖商品试剂盒比较相关系数R2=0.9946;36例血液样品中的葡萄糖浓度在4.26~17.48 mmol/L之间。 与葡萄糖检测商品试剂盒之间的两组数据经统计差异不显著(P>0.05)。 该方法是一种简单、廉价、方便、灵敏的比色测定方法。  相似文献   

19.
机体内果糖的自氧化过程中会产生多种自由基, 并最终转化为羟自由基, 苯甲酸钠可捕获羟自由基生成具有强荧光信号的羟基苯甲酸钠. 本文采用荧光光度法考察了影响果糖自氧化体系的各种因素, 建立了果糖自氧化产生羟自由基体系. 实验结果表明, 在果糖浓度为8.00 mmol/L, CuSO4浓度为20.0 μmol/L, 苯甲酸钠浓度为24.0 mmol/L, pH=7.4, 温度为37℃及反应时间为24 h的条件下, 果糖自氧化体系最终可产生19.27 μmol/L的羟自由基. 抗氧化剂的存在可清除果糖自氧化过程中产生的自由基, 使最终生成的羟自由基的量减少, 从而导致生成的羟基苯甲酸钠减少, 荧光信号减弱, 由此建立了基于果糖自氧化体系的抗氧化剂筛选方法. 利用本评价体系考察了抗氧化剂盐酸小檗碱和阿魏酸的抗氧化能力, 实验结果表明, 中药标准品盐酸小檗碱和阿魏酸均能有效清除果糖自氧化体系产生的羟自由基, 其IC50值分别为0.023和0.036 mmol/L.  相似文献   

20.
《Analytical letters》2012,45(5):897-906
Abstract

A wireless magnetoelastic glucose biosensor in blood plasma is described, based on using a mass sensitive magnetoelastic sensor as transducer. The glucose biosensor was fabricated by coating the ribbon‐like, magnetoelastic sensor with a pH sensitive polymer and a biolayer of glucose oxidase (GOx) and catalase. The pH response polymer swells or shrinks, thereby changing sensor mass loading, respectively, in response to increase or decrease of pH values. The GOx–catalyzed oxidation of the glucose in blood plasma produces gluconic acid, resulting in the pH sensitive polymer shrinking, which in turn decreases the sensor mass loading. The results show that the proposed magnetoelastic glucose biosensor can be successfully applied to determine the concentration of glucose in blood plasma. At glucose concentration range of 2.5–20.0 mmol/l, the biosensor responses are reversible and linear, with a detection limit of 1.2 mmol/l. Since no physical connections between the sensor and the monitoring instruments are required, this proposed biosensor can potentially be applied to in vivo and in situ measurement of glucose concentration in physiological fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号