首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文将改进的复变量无单元Galerkin方法(Improved Complex Variable Element-free Galerkin method,ICVEFG)应用于求解正交各向异性介质中的稳态热传导问题,提出了正交各向异性稳态热传导问题的ICVEFG方法。采用罚函数法引入本质边界条件,推导了正交各向异性介质中的稳态热传导问题的Galerkin积分弱形式。采用改进的复变量移动最小二乘近似(Improved Complex Variable Moving least-squares approximation,ICVMLS)建立二维温度场问题的逼近函数,推导了相应的计算公式。编制了计算程序,对三个正交各向异性介质中的热传导问题进行了分析,说明了本文方法的有效性。  相似文献   

2.
Control volume finite element methods (CVFEMs) have been proposed to simulate flow in heterogeneous porous media because they are better able to capture complex geometries using unstructured meshes. However, producing good quality meshes in such models is nontrivial and may sometimes be impossible, especially when all or parts of the domains have very large aspect ratio. A novel CVFEM is proposed here that uses a control volume representation for pressure and yields significant improvements in the quality of the pressure matrix. The method is initially evaluated and then applied to a series of test cases using unstructured (triangular/tetrahedral) meshes, and numerical results are in good agreement with semianalytically obtained solutions. The convergence of the pressure matrix is then studied using complex, heterogeneous example problems. The results demonstrate that the new formulation yields a pressure matrix than can be solved efficiently even on highly distorted, tetrahedral meshes in models of heterogeneous porous media with large permeability contrasts. The new approach allows effective application of CVFEM in such models.  相似文献   

3.
A unified method for constructing basis (eigen) functions is proposed to solve problems of mechanics of continuous media, problems of cubature and quadrature, and problems of approximation of hypersurfaces. Numerical-analytical methods are described, which allow obtaining approximate solutions of internal and external boundary-value problems of mechanics of continuous media of a certain class (both linear and nonlinear). The method is based on decomposition of the sought solutions of the considered partial differential equations into series in basis functions. An algorithm is presented for linearization of partial differential equations and reduction of nonlinear boundary-value problems, which are reduced to systems of linear algebraic equations with respect to unknown coefficients without using traditional methods of linearization.  相似文献   

4.
孔曦骏  邢浩洁  李鸿晶 《力学学报》2022,54(9):2513-2528
流固耦合地震波动问题主要研究由流体和固体构成的复杂系统中地震波传播特性及其规律. 传统模拟方法中一般以声波方程、弹性波方程的数值解分别描述理想流体和弹性固体中的波动, 并实时地处理两种不同性质介质之间的相互耦合作用, 数值格式复杂且限制数值模拟精度与计算效率. 本文采用谱元法结合多次透射公式人工边界条件实现了一种流固耦合地震波动问题的高阶显式数值计算方法. 该方法利用了流固耦合问题统一计算框架,可将饱和多孔介质的Biot波动方程分别退化为理想流体的声波方程和弹性固体的弹性波方程. 通过P波垂直入射的水平成层理想流体-饱和多孔介质-弹性固体场地模型、P波斜入射的不规则层状界面以及任意形状界面的理想流体-饱和多孔介质-弹性固体场地模型等三个算例, 与传递函数法解析解以及集中质量有限元法计算结果进行对比分析, 证明了本文方法的正确性与有效性. 数值模拟结果表明, 本文方法相较传统有限元法可以少得多的节点数量获得更高的数值精度, 并且在较宽的频率范围内都能可靠地模拟出流固耦合系统的动力响应, 充分体现出本文方法兼顾高精度、计算效率和复杂场地建模灵活的特点.   相似文献   

5.
The two-dimensional thermoelastic crack problem in bonded dissimilar media or in a half-plane medium is considered. The proposed method for solving this problem consists of two parts. In the first part, complex potential functions are derived which are enforced to satisfy the continuity conditions across the interface, while the second part consists of the derivation of singular integral equations by introducing the dislocation functions along the crack border which are solved numerically. For both half-plane and two bonded half-plane problems associated with an insulated crack, the thermal stress intensity factors are computed numerically by using the appropriate interpolation formulae. The results compared with those of the homogeneous case given in the literature show that the method proposed here is effective, simple and general.  相似文献   

6.
层状弹性半空间轴对称动力问题的奇异解   总被引:3,自引:1,他引:3  
曾三平  曹志远 《力学学报》1992,24(4):446-457
本文利用Laplace-Hankel联合变换及传播矩阵技术导出了任意层数的层状弹性半空间轴对称动力问题时域奇异解的一般解析表达式,并给出了奇异解数值化实施的计算方法。文末的实例计算表明了本文给出解答的正确性以及数值化实施的可靠性,从而为进一步用边界元法直接解决由于层状介质而引起的非匀质动力问题开拓了一条潜在的途径。  相似文献   

7.
Based on the Porous Media Theory (PMT), a mathematical model of space-axisymmetrical problems for incompressible fluid-saturated visco-elastic porous media is presented in the case of small deformation, in which the differential-type constitutive relation is applied to describe the mechanical characteristics of solid skeleton. The differential quadrature method (DQM) and the second-order backward difference scheme are used to discretize the governing equations on the spatial and temporal domains, respectively, and a method is proposed to deal with the singularity conditions at points located on the symmetry axis. As application, the dynamic behavior of a column of fluid-saturated elastic porous media is analyzed firstly. The obtained results are compared with the analytical results in the existing literature, they are comparatively accordant, which means that the model and method presented in this paper are correct, and the obtained results are reliable. Further, the dynamic response of a space-axisymmetrical body of fluid-saturated visco-elastic porous media is analyzed, in which the material characteristic of the solid skeleton is described by Burgers model with four parameters.  相似文献   

8.
The main trends in the analysis of dynamic problems for discontinuous media are briefly outlined. An efficient method is proposed to solve such problems for semibounded layered media. Functional matrix relations in a new form are derived for the basic dynamic characteristics of the problem  相似文献   

9.
A mathematical model and a numerical method are developed for studying nonlinear wave processes in two-phase liquids with gas or vapor bubbles under conditions of impact interaction with deformable media. On the basis of the proposed approach to the numerical modeling of the dynamics of the transient processes in the two-phase vapor-liquid and deformable media, the basic features of the phase behavior, the phase transitions, and the interphase heat and mass transfer, typical of liquids containing vapor bubbles, are analyzed. The results of solving problems of the dynamics of different vapor-liquid media are presented.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, 2005, pp. 88–102.Original Russian Text Copyright © 2005 by Petushkov.  相似文献   

10.

The wavelet multiresolution interpolation for continuous functions defined on a finite interval is developed in this study by using a simple alternative of transformation matrix. The wavelet multiresolution interpolation Galerkin method that applies this interpolation to represent the unknown function and nonlinear terms independently is proposed to solve the boundary value problems with the mixed Dirichlet-Robin boundary conditions and various nonlinearities, including transcendental ones, in which the discretization process is as simple as that in solving linear problems, and only common two-term connection coefficients are needed. All matrices are independent of unknown node values and lead to high efficiency in the calculation of the residual and Jacobian matrices needed in Newton’s method, which does not require numerical integration in the resulting nonlinear discrete system. The validity of the proposed method is examined through several nonlinear problems with interior or boundary layers. The results demonstrate that the proposed wavelet method shows excellent accuracy and stability against nonuniform grids, and high resolution of localized steep gradients can be achieved by using local refined multiresolution grids. In addition, Newton’s method converges rapidly in solving the nonlinear discrete system created by the proposed wavelet method, including the initial guess far from real solutions.

  相似文献   

11.
In this study, a new finite element method (the MSR-method) is proposed for unsteady three-dimensional thermal-fluid analyses. This method is a combination of a modified Galerkin method (MGM) and the SIMPLER formulation. In the MSR-method the velocity and pressure are computed using the SIMPLER procedure and the approximate velocity and the energy equation are solved using the MGM. In the MGM, the inertia term and the pressure term are considered explicitly, so only the symmetrical matrixes appear. Then an artificial viscosity is introduced through an error analysis approach to improve its accuracy and stability. In this paper, the natural convection problems in a three-dimensional cavity are simulated up to the Rayleigh number of 108, and converged solutions are obtained. Authors confirmed that our proposed method gives reasonable results for these problems comparing with other research works.  相似文献   

12.
双相介质波动方程孔隙率反演的同伦方法   总被引:7,自引:2,他引:7  
从材料响应的理论合成应与实际测量数据相拟合这一出发点,将双相介质波劝方程参数的反演问题转化为非线性算子方程的零点求解问题,从而应用一种大范围收敛的同伦方尘土注来解非线性算子方程,并把这种方法用于Simon(1984)给出的具有解析的一维双相介质模型的数值模拟,最后的数值结果表明,给出的算法是十分有效的。  相似文献   

13.
The optical method of pseudocaustics can be used for the experimental solution of plane elasticity, smooth contact problems for finite or infinite media in contact of arbitrary shape. This technique constitutes an alternative to the various numerical and experimental techniques for the approximate solution of plane elasticity contact problems. The success in the application of the method of pseudocaustics to plane elasticity contact problems is due to the possibility inherent in this method of the direct determination of the derivative Φ'(z) of the complex potential Φ(z) of N.I. Muskhelishvili along the boundaries of the media in contact. Then, the Muskhelishvili complex potentials, Φ(z) and Ψ(z), completely characterizing the state of stress and strain in a plane elastic medium, can easily be determined at any point of the media in contact after simple algebraic calculations. Two applications of the proposed method to contact problems of practical interest are also made.  相似文献   

14.
The Lurie-Vorovich method of homogeneous solutions is discussed with reference to the reduction problem. A general procedure for studying the three-dimensional stress concentration in multiply connected bodies of finite size is proposed. Model problems are solved to examine the influence of geometrical parameters on the stress state. The Lurie-Vorovich method is generalized to media with complicated properties and demonstrated with problems in composite mechanics and crack theory __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 2, pp. 45–69, February 2007. For the centenary of the birth of G. N. Savin.  相似文献   

15.
16.
Recent developments in meshless numerical methods have led to algorithms that can be used to solve arbitrarily large problems without the support of a connected mesh, and without the computational cost and numerical ill-conditioning issues usually associated with such solution techniques. This work applies the Local Hermitian Interpolation (LHI) method, based on local interpolation with Radial Basis Functions (RBFs), to the solution of 3D unsaturated porous media problems. The proposed implementation is capable of handling real soil properties, provided either as an analytical function or as a series of pointwise measurements. The technique is implemented with implicit and explicit timestepping, and is validated against two transient Richards’ equation models, of which one has a known analytical solution. In addition, a real-world infiltration problem based on a saturated–unsaturated formulation is modelled, using a realistic variation of soil properties with water-pressure.  相似文献   

17.
The flow of non-Newtonian fluids through two-dimensional porous media is analyzed at the pore scale using the smoothed particle hydrodynamics (SPH) method. A fully explicit projection method is used to simulate incompressible flow. This study focuses on a shear-thinning power-law model (n < 1), though the method is sufficiently general to include other stress-shear rate relationships. The capabilities of the proposed method are demonstrated by analyzing a Poiseuille problem at low Reynolds numbers. Two test cases are also solved to evaluate validity of Darcy’s law for power-law fluids and to investigate the effect of anisotropy at the pore scale. Results show that the proposed algorithm can accurately simulate non-Newtonian fluid flows in porous media.  相似文献   

18.
This paper presents a development of the boundary contour method (BCM) for magneto-electro-elastic media. First, the divergence-free of the integrand of the magneto-electro-elastic boundary element is proved. Second, the boundary contour method formulations are obtained by introducing quadratic shape functions and Green’s functions [Ding, H.J., Jiang, A.M., 2004. A boundary integral formulation and solution for 2D problems in magneto-electro-elastic media. Computers and Structures, 82 (20–21), 1599–1607] for magneto-electro-elastic media and using the rigid body motion solution to regularize the BCM and avoid computation of the corner tensor. The BCM is applied to the problem of magneto-electro-elastic media. Finally, numerical solutions for illustrative examples are compared with exact ones. The numerical results of the BCM coincide very well with the exact solution, and the feasibility and efficiency of the method are verified.  相似文献   

19.
This article describes a semi-analytical model for two-phase immiscible flow in porous media. The model incorporates the effect of capillary pressure gradient on fluid displacement. It also includes a correction to the capillarity-free Buckley–Leverett saturation profile for the stabilized-zone around the displacement front and the end-effects near the core outlet. The model is valid for both drainage and imbibition oil–water displacements in porous media with different wettability conditions. A stepwise procedure is presented to derive relative permeabilities from coreflood displacements using the proposed semi-analytical model. The procedure can be utilized for both before and after breakthrough data and hence is capable to generate a continuous relative permeability curve unlike other analytical/semi-analytical approaches. The model predictions are compared with numerical simulations and laboratory experiments. The comparison shows that the model predictions for drainage process agree well with the numerical simulations for different capillary numbers, whereas there is mismatch between the relative permeability derived using the Johnson–Bossler–Naumann (JBN) method and the simulations. The coreflood experiments carried out on a Berea sandstone core suggest that the proposed model works better than the JBN method for a drainage process in strongly wet rocks. Both methods give similar results for imbibition processes.  相似文献   

20.
Bottom rack intake is one of the most popular structures for diverting water in steep rivers. The problems of corrosion, deformity, and clogging of the bottom racks in long term inspire a new system of bottom intake in which a filled trench of porous media replaces the bottom racks. Diversion of a specified amount of water through the porous media, when the void space in the granular material is filled with fine sediments in comparison to the bottom racks, requires much larger structure. For the proposed water intake, lower cost of construction and maintenance and higher compatibility with the river morphology are considered as major advantages. This research deals with an experimental model with two-story channel, the lower one is used to convey diverted water through the porous media and the upper one is used to carry the remained flow to downstream. Measurements of the diverted discharge were performed for different rates of flow, grain, and sediment size distributions as well as surface slopes of intake. Results show that despite clogging of the suspended sediments in porous media, using appropriate grain size with a surface slope of the porous media increases the discharge coefficient of system. In comparison to the clear water flow, the diverted discharge reduction induced by clogging is not significant and the efficiency of system in long term with no operation effort is confirmed. An empirical formulation has been proposed based on the concept of Darcy’s law for surface infiltration. The equation is found to be dependent on size ratio, Reynolds number, and hydraulic gradient. The theoretical predictions in comparison with the experimental results have shown a good consistency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号