首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five new diorganotin N‐[(3‐methoxy‐2‐oxyphenyl)methylene] tyrosinates, R2Sn[2‐O‐3‐MeOC6H3CH=NCH (CH2C6H4OH‐4)COO] (R = Me, 1 ; Et, 2 ; Bu, 3 ; Cy, 4 ; Ph, 5 ), have been synthesized and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) spectra, and the X‐ray single crystal diffraction. In non‐coordinated solvent, complexes 1 – 5 have penta‐coordinated tin atom. In the solid state, 1 – 3 are centrosymmetric dimmers in which each tin atom is seven‐coordinated in a distorted pentagonal bipyramid, and 4 displays discrete molecular structure with distorted trigonal bipyramidal geometry, and the tin atom of 5 is hexa‐coordinated and possess the distorted octahedral geometry with a coordinational methanol molecule. The intermolecular O‐H???O hydrogen bonds in 1 – 4 link molecules into the different one‐dimensional supramolecular chain with R22 (30) or R22 (20) macrocycles, and the molecules of 5 are joined into a two‐dimensional supramolecular network containing R44 (24) and R44 (28) two macrocycles. Bioassay results against human tumour cell HeLa indicated that 3 ‐ 5 belonged to the efficient cytostatic agents and the activity decreased in the order 4 > 3 > 5 > 2 > 1. The fluorescence determinations show the complexes may be explored for potential luminescent materials.  相似文献   

2.
Six new triorganotin complexes ( 1a – 1c and 2a – 2c ) of 5‐(salicylideneamino)salicylic acid, [5‐(3‐X‐2‐HOC6H3CH═N)‐2‐HOC6H3COO]SnR3 (X = H, 1 ; CH3O, 2 ; R = Ph, a ; Cy, b ; CH2C(CH3)2Ph, c ), have been synthesized by one‐pot reaction of 5‐aminosalicylic acid, salicylaldehyde and triorganotin hydroxide and characterized using elemental analysis and infrared and NMR (1H, 13C and 119Sn) spectra. The crystal structures of 1a , 1b , 2a ·CH3OH, 2b ·CH3OH and 2c ·CHCl3 have been determined using single‐crystal X‐ray diffraction. In non‐coordinated solvent CDCl3, the tin atoms in the complexes are all four‐coordinated. In the crystalline state, these compounds adopt a four‐ or five‐coordination mode. Complex 1a exhibits a 44‐membered macrocyclic tetrameric structure with trigonal bipyramidal geometry around the tin atoms in which the axial positions are occupied by the oxygen atom of carboxylate group of the ligand and the phenolic oxygen atom from the adjacent ligand. The coordination geometry of tin atom in 1b and 2c ·CHCl3 is a distorted tetrahedron shaped by three carbon atoms of alkyl groups and a carboxylate oxygen atom of the ligand. In 2a ·CH3OH and 2b ·CH3OH, the tin atom has a distorted trans‐C3SnO2 trigonal bipyramidal geometry formed by three alkyl groups, a monodentate carboxylate group and a coordinated methanol molecule. The molecules of 2a ·CH3OH and 2b ·CH3OH are linked via O─H···O hydrogen bonds into a one‐dimensional supramolecular chain and a centrosymmetric R44(22) macrocycle, respectively. Bioassay results against two human tumor cell types (A549 and HeLa) show the complexes are efficient cytostatic agents and may be explored as potential antitumor drugs.  相似文献   

3.
Two new bis(tricyclohexyltin)benzenedioxyacetates, 1,x‐C6H4[OCH2CO2Sn(c‐C6H11)3]2 ( 1 : x = 3; 2 : x = 4), have been synthesized and characterized by means of elemental analysis, infrared and NMR (1H, 13C and 119Sn) spectra and single‐crystal X‐ray diffraction. Compound 1 ?H2O?CH3OH is a binuclear tin complex containing a four‐coordinated tin and a five‐coordinated tin and linked by an R33(16) hydrogen bond into a one‐dimensional supramolecular chain. Compound 2 is a two‐dimensional coordination polymer which is formed as a result of anisobidentate bridging coordination action of the two carboxylate units of the ligand. Interestingly the two‐dimensional coordination polymer contains 34‐membered macrocycles each of which is comprised of four tricyclohexyltin units. Both compounds have potent in vitro cytotoxic activity against three human tumor cell lines: HeLa, MCF‐7 and CoLo 205. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
尹汉东  洪敏  王其宝 《中国化学》2005,23(1):105-108
The tetranuclear alkyltin(Ⅳ) compounds {[R2Sn(C9H8N3O3)O]SnR3}2 [R=n-Bu (1), 4-CNC6H4CH2 (2),C6H5CH2 (3), 4-ClC6H4CH2 (4)] were prepared by the reaction of Schiff base ligand pyruvic acid isonicotinyl hydrazone with (R3Sn)2O in the corresponding molar ratio of 1:1. All compounds have been characterized by elemental analysis, IR and ^1H NMR spectra. The crystal structure of compound 1 was determined by X-ray single crystal diffractional analysis. This compound exhibits a dimeric structure containing distannoxane units with two types of the tin atoms. For the first tin atom, it appears to be seven-coordinated with a distorted pentagonal bipyramid geometry, and the other is five-coordinated with a distorted trigonal bipyramidal geometry. The molecules are packed in the unit cell in two-dimensional network structure through an interaction between the N atoms of the pyridine and the tin atoms of an adjacent molecule.  相似文献   

5.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

6.
Four new diorganotin(IV) complexes of N‐(5‐halosalicylidene)tryptophane, R2Sn[5‐X‐2‐OC6H3CH?NCH(CH2Ind)COO] [Ind = 3‐indolyl; R, X = Et, Cl ( 1 ); Et, Br( 2 ); n‐Bu, Cl ( 3 ); n‐Bu, Br ( 4 )], were synthesized and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of complexes 1 – 3 were determined by X‐ray single crystal diffraction and showed that the tin atoms are in a distorted trigonal bipyramidal geometry and form five‐ and six‐membered chelate rings with the tridentate ligand. Intermolecular weak interactions in 1–3 link molecules, respectively, into a two‐dimensional array, a one‐dimensional infinite chain and a one‐dimensional double‐chain supramolecular structure. Bioassay results of the compounds indicated that the dibutyltin complexes 3 and 4 have potent in vitro cytotoxic activity against two human tumor cell lines, CoLo205 and Bcap37, while the diethyltin complexes 1 and 2 display weak cytotoxic activity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A series of organotin(IV) complexes with 2‐mercapto‐5‐methyl‐1,3,4‐thiadiazole (HL) of the type R3 Sn(L) (R = Me 1 ; Bu 2 ; Ph 3 ; PhCH2 4 ) and R2Sn(L)2 (R = CH3 5 ; Ph 6 ; PhCH2 7 ; Bu 8 ) have been synthesized. All complexes 1–8 were characterized by elemental analysis, IR,1H, 13 C, and 119Sn NMR spectra. Among these, complexes 1 , 3 , 4 , and 7 were also determined by X‐ray crystallography. The tin atoms of complexes 1 , 3 , and 4 are all penta‐coordinated and the geometries at tin atoms of complexes 3 and 4 are distorted trigonal–bipyramidal. Interestingly, complex 1 has formed a 1D polymeric chain through Sn and N intermolecular interactions. The tin atom of complex 7 is hexa‐coordinated and its geometry is distorted octahedral. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:353–364, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20215  相似文献   

8.
Two new dinuclear phenyltin(IV) complexes derived from N,N′‐bis(2‐hydroxybenzyl)‐1,2‐ethanebis(dithiocarbamate) ligand, [2‐HOC6H4CH2N(CS2SnPh3)CH2]2 ( 1 ) and [2‐HOC6H4CH2N(CS2SnClPh2)CH2]2 ( 2 ) have been synthesized and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of complexes 1 and 2 were determined by X‐ray single crystal diffraction and show that the dithiocarbamate ligand is coordinated to the tin atom in the anisobidentate manner and the tin atom is five‐coordinated. The coordination geometry of tin atom is best described as an intermediate between trigonal bipyramidal and square pyramidal with τ‐values of 0.63 and 0.53, respectively. Intermolecular hydrogen bonds (O H···S and O H···Cl) in 1 and 2 connect neighboring molecules into a one‐dimensional supramolecular chain with the centrosymmetric cyclic motifs. Complex 1 has potent in vitro cytotoxic activity against two human tumor cell lines, CoLo205 and Bcap37, while complex 2 displays weak cytotoxic activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The title compound, di­bromo­di­methyl(N‐methyl­pyrrolidin‐2‐one‐O)­tin(IV), [SnBr2(CH3)2(C5H9NO)], exhibits pentacoordination of the Sn atom, with long and short Sn—Br bonds [2.6737 (4) and 2.5256 (4) Å, respectively]. The distorted trigonal–bipyramidal coordination polyhedron has two methyl groups and one Br atom in the equatorial plane, the second Br atom and the N‐methyl­pyrrolidinone (NMP) ligand occupying the apical positions.  相似文献   

10.
Fourteen new diorganotin(IV) complexes of N‐(5‐halosalicylidene)‐α‐amino acid, R′2Sn(5‐X‐2‐OC6H3CH?NCHRCOO) (where X = Cl, Br; R = H, Me, i‐Pr; R′ = n‐Bu, Ph, Cy), were synthesized by the reactions of diorganotin halides with potassium salt of N‐(5‐halosalicylidene)‐α‐amino acid and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of Bu2Sn(5‐Cl‐2‐OC6H3CH?NCH(i‐Pr)COO) and Ph2Sn(5‐Br‐2‐OC6H3CH?NCH(i‐Pr)COO) were determined by X‐ray single‐crystal diffraction and showed that the tin atoms are in a distorted trigonal bipyramidal geometry and form five‐ and six‐membered chelate rings with the tridentate ligand. Bioassay results of a few compounds indicated that the compounds have strong cytotoxic activity against three human tumour cell lines, i.e. HeLa, CoLo205 and MCF‐7, and the activity decreased in the order Cy>n‐Bu>Ph for the R′ group bound to tin. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The title compounds, di‐μ‐bromido‐bis[bromido(1‐carboxymethyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane‐κN4)(nitrito‐κ2O,O′)cadmium(II)] dihydrate, [Cd2Br4(C8H15N2O2)2(NO2)2]·2H2O, (I), and aquabromido(1‐cyanomethyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane‐κN4)bis(nitrito‐κ2O,O′)cadmium(II) monohydrate, [CdBr(C8H14N3)(NO2)2(H2O)]·H2O, (II), are two‐dimensional hydrogen‐bonded metal–organic hybrid complexes. In (I), the complex is situated on a centre of inversion so that each symmetry‐related CdII atom is coordinated by two bridging Br atoms, one monodentate Br atom, one chelating nitrite ligand and one organic ligand, yielding a significantly distorted octahedral geometry. The combination of O—H...O and O—H...Br hydrogen bonds produces centrosymmetric R66(16) ring motifs, resulting in two‐dimensional layers parallel to the ab plane. In contrast, the complex molecule in (II) is mononuclear, with the CdII atom seven‐coordinated by two bidentate nitrite groups, one N atom from the organic ligand, one monodentate Br atom and a water O atom in a distorted pentagonal–bipyramidal environment. The combination of O—H...O and O—H...Br hydrogen bonds produces R54(14) and R33(8) rings which lead to two‐dimensional layers parallel to the ac plane.  相似文献   

12.
3‐(Pyridin‐4‐yl)acetylacetone (HacacPy) acts as a pyridine‐type ligand towards CdII and HgII halides. With CdBr2, the one‐dimensional polymer [Cd(μ‐Br)2(HacacPy)Cd(μ‐Br)2(HacacPy)2] is obtained in which five‐ and six‐coordinated CdII cations alternate in the chain direction. Reaction of HacacPy with HgBr2 results in [Hg(μ‐Br)Br(HacacPy)], a polymer in which each HgII centre is tetracoordinated. In both compounds, each metal(II) cation is N‐coordinated by at least one HacacPy ligand. Equimolar reaction between these CdII and HgII derivatives, either conducted in ethanol as solvent or via grinding in the solid state, leads to ligand redistribution and the formation of the well‐ordered bimetallic polymer catena‐poly[[bromidomercury(II)]‐μ‐bromido‐[aquabis[4‐hydroxy‐3‐(pyridin‐4‐yl)pent‐3‐en‐2‐one]cadmium(II)]‐di‐μ‐bromido], [CdHgBr4(C10H11NO2)2(H2O)]n or [{HgBr}(μ‐Br){(HacacPy)2Cd(H2O)}(μ‐Br)2]. HgII and CdII cations alternate in the [100] direction. The HacacPy ligands do not bind to the HgII cations, which are tetracoordinated by three bridging and one terminal bromide ligand. The CdII centres adopt an only slightly distorted octahedral coordination. Three bromide ligands link them in a (2 + 1) pattern to neighbouring HgII atoms; two HacacPy ligands in a cis configuration, acting as N‐atom donors, and a terminal aqua ligand complete the coordination sphere. Classical O—H…Br hydrogen bonds stabilize the polymeric chain. O—H…O hydrogen bonds between aqua H atoms and the uncoordinated carbonyl group of an HacacPy ligand in a neighbouring strand in the c direction link the chains into layers in the (010) plane.  相似文献   

13.
The title compound, {[N,N‐bis­(2‐pyridylmeth­yl)­amino]­ethanol‐κ3N,N′,N′′}tricarbonyl­rhenium(I) bromide methanol solvate, [Re(C14H17N3O)(CO)3]Br·CH4O, has been prepared in almost quantitative yield by reacting (NEt4)2[Re(CO)3Br3] with the ligand N,N‐bis­picol­yl‐2‐ethano­lamine in refluxing methanol. The X‐ray structure revealed that the Re(CO)3N3 coordination sphere is highly distorted from octa­hedral geometry and that the Re(CO)3 core is facial. The coordinated ligand forms two five‐membered rings, with the pyridine rings in a butterfly formation. The OH group is not involved in metal coordination. The packing of the mol­ecule shows a network of classical O⋯H—O and Br⋯H—O, and non‐classical Br⋯H—C and O⋯H—C hydrogen bonds between the methanol solvate mol­ecules, the metal complex cations and the bromide anions.  相似文献   

14.
The diorganotin(IV) complexes of methyl 2‐{4‐hydroxy‐3‐[(2‐hydroxy‐phenylimino)‐methyl]‐phenylazo}‐benzoate (H2L) were obtained by the reaction of ortho‐aminophenol, R2SnO (R = Me, nBu, or Ph) and methyl 2‐[(E)‐(3‐formyl‐4‐hydroxy)diazenyl]benzoate (H2PL2) in ethanol, which led to diorganotin(IV) compounds of composition [Me2SnL]2 ( 1 ), nBu2SnL ( 2 ), and Ph2SnL ( 3 ) in good yield. The 1H, 13C, and 119Sn NMR, IR, the mass spectrometry along with elemental analyses allowed establishing the structure of ligand (H2L) and compounds 1–3 . In all the three cases, 119Sn chemical shifts are indicators of five‐coordinated Sn atoms in a solution state. The crystal structures of ligand H2L and complexes 1 and 2 were determined by a single crystal X‐ray diffraction study. In the solid state, the ligand H2L exists as a keto‐enamine tautomeric form. The molecular structure of complex 1 in the solid state shows a distorted octahedral geometry around a tin atom due to additional coordination with an oxygen atom from a neighboring molecule leading to a four‐membered ring with Sn‐O···Sn‐O intermolecular coordination, leading to a dimeric species. On the other hand, complex 2 is a monomer with trigonal bipyramidal geometry surrounding the tin atom. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:457–465, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21037  相似文献   

15.
Two new (η3‐allyl)palladium complexes containing the ligand 3,5‐dimethyl‐4‐nitro‐1H‐pyrazole (Hdmnpz) were synthesized and characterized as [Pd(η3‐C3H5)(Hdmnpz)2]BF4 ( 1 ) and [Pd(η3‐C3H5)(Hdmnpz)2]NO3 ( 2 ). The structures of these compounds were determined by single‐crystal X‐ray diffraction to evaluate the intermolecular assembly. Each complex exhibits similar coordination behavior consistent with cationic entities comprised of two pyrazole ligands coordinated with the [Pd(η3‐C3H5)]+ fragment in an almost square‐planar coordination geometry. In 1 , the cationic entities are propagated through strong intermolecular H‐bonds formed between the pyrazole NH groups and BF ions in one‐dimensional polymer chains along the a axis. These chains are extended into two‐dimensional sheet networks via bifurcated H‐bonds. New intermolecular interactions established between NO2 and Me substituents at the pyrazole ligand of neighboring sheets give rise to a three‐dimensional network. By contrast, compound 2 presents molecular cyclic dimers formed through N? H???O H‐bonds between two NO counterions and the pyrazole NH groups of two cationic entities. The dimers are also connected to each other through C? H???O H‐bonds between the remaining O‐atom of each NO ion and the allyl CH2 H‐atom. Those interactions expand in a layer which lies parallel to the face (101).  相似文献   

16.
A new dinuclear coordination compound of palladium(II), [Pd2(terpy)2(μ‐tas‐N1,N4)]SO4?11H2O ( 1 ), was synthesized by tethering a doubly deprotonated 1,2,4‐triazole‐3‐sulfonate (tas) linker generated in situ via oxidation of 1,2,4‐triazole‐3‐thione (tat) under the synthetic conditions. X‐ray diffraction analysis reveals that tat molecules adopt the thione form in the solid state, and are combined in infinite chains by symmetrically related classical intermolecular hydrogen bonds N1─H1???S1, N3─H3???N2 to give rise to R22(7) pattern in one‐dimensional chains along the b‐axis propagating along the a‐axis. Further short contacts through lone pairs of N2???S1 on the rings between the adjacent chains along the a‐axis lead to a two‐dimensional network structure. Compound 1 was characterized using infrared, 1H NMR and UV–visible spectroscopies, electrospray ionization mass spectrometry and X‐ray crystallography. The crystal structure determination of 1 reveals that the Pd(II) ions are coordinated with four nitrogen atoms: three from terpy and one from tas acting as an end‐to‐end (μ‐1,4) bridging ligand. The Pd(II) ions in 1 adopt a distorted square planar geometry. The anti‐growth effect of 1 was tested on colorectal cancer (HCT‐15), non‐small‐cell lung cancer (A549), prostate cancer (PC‐3) and cervical cancer (HeLa) cell lines using sulforhodamine B viability assay. The cytotoxic effect was further confirmed using adenosine triphosphate viability assay. Compound 1 shows a promising cytotoxic activity in the diverse cancer cell models in vitro (p <0.0001).  相似文献   

17.
Four organotin complexes with 2,2′‐bipyridine‐4,4′‐dicarboxylic acid, H2dcbp: (Ph3n)2(dcbp) 1 , [(PhCH2)3n]2(dcbp) ⋅ 2CH3OH 2 , [(Me3Sn)2(dcbp)]n 3 , [(Bu3Sn)2(dcbp)]n 4 have been synthesized. The complexes 1–4 were characterized by elemental, IR, 1H, 13C, 119n NMR, and X‐ray crystallographic analyses. Crystal structures show that complex 1 is a monomer with one ligand coordinated to two triorganotin moieties, and a 1D infinite polymeric chain generates via intermolecular C H⋅⋅⋅N hydrogen bond; complex 2 is also a monomer and forms a 2D network by intermolecular O–H⋅⋅⋅O weak interaction; both of complexes 3 and 4 form 2D network structures where 2,2′‐bipyridine‐4,4′‐dicarboxylate acts as a tetradentate ligand coordinated to trimethyltin and tri‐n‐butyltin ions, respectively. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:19–28, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20506  相似文献   

18.
Reaction of dithioacid (ArCS2CH2CO2H, Ar = phenyl, 2‐furyl or 2‐thienyl) with nBu2SnO gives monomeric (ArCS2CH2CO2)2Sn(Bun)2 in a 2:1 molar ratio, and dimeric {[(ArCS2CH2CO2)Sn(Bun)2]2O}2 in a 1:1 molar ratio, respectively, which have been characterized by IR, NMR (1H, 13C and 119Sn) spectra and elemental analyses. X‐ray crystal structure analyses indicate that the compound [(C4H3S)CS2CH2CO2]2Sn(Bun)2 is monomeric with the tin atom occupying a skew‐trapezoidal bipyramidal geometry. In addition, this compound forms a three‐dimensional structure through the weak intermolecular SS and SnO interactions. Compound {[((C4H3S)CS2CH2CO2)Sn(Bun)2]2O}2 is a centrosymmetric dimer with a cyclic Sn2O2 unit, in which the coordination modes of the two crystallographically unique carboxylic ligands are different. One acts as monodentate ligand by the carboxylate oxygen atom, the other bridges two tin atoms via only one carboxylate oxygen atom. Furthermore, each tin atom in this compound locates a distorted trigonal bipyramidal geometry. Biological activities of these organotin compounds show that they have hardly acaricidal activity, but display certain activities on fungi. In mononuclear tin compounds, the inhibition percentage of [(C4H3S)CS2CH2CO2]2Sn(Bun)2 in vitro for Alternaria solani and Physolospora piricola is 57.1% and 43.9%, respectively, while in dimers {[((C4H3O)CS2CH2CO2)Sn(Bun)2]2O}2 shows high inhibition percentage for Gibbereila zeae (52.6%) and Physolospora piricola (50.0%), respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Three new metal(II)–cytosine (Cy)/5‐fluorocytosine (5FC) complexes, namely bis(4‐amino‐1,2‐dihydropyrimidin‐2‐one‐κN3)diiodidocadmium(II) or bis(cytosine)diiodidocadmium(II), [CdI2(C4H5N3O)2], ( I ), bis(4‐amino‐1,2‐dihydropyrimidin‐2‐one‐κN3)bis(nitrato‐κ2O,O′)cadmium(II) or bis(cytosine)bis(nitrato)cadmium(II), [Cd(NO3)2(C4H5N3O)2], ( II ), and (6‐amino‐5‐fluoro‐1,2‐dihydropyrimidin‐2‐one‐κN3)aquadibromidozinc(II)–6‐amino‐5‐fluoro‐1,2‐dihydropyrimidin‐2‐one (1/1) or (6‐amino‐5‐fluorocytosine)aquadibromidozinc(II)–4‐amino‐5‐fluorocytosine (1/1), [ZnBr2(C4H5FN3O)(H2O)]·C4H5FN3O, ( III ), have been synthesized and characterized by single‐crystal X‐ray diffraction. In complex ( I ), the CdII ion is coordinated to two iodide ions and the endocyclic N atoms of the two cytosine molecules, leading to a distorted tetrahedral geometry. The structure is isotypic with [CdBr2(C4H5N3O)2] [Muthiah et al. (2001). Acta Cryst. E 57 , m558–m560]. In compound ( II ), each of the two cytosine molecules coordinates to the CdII ion in a bidentate chelating mode via the endocyclic N atom and the O atom. Each of the two nitrate ions also coordinates in a bidentate chelating mode, forming a bicapped distorted octahedral geometry around cadmium. The typical interligand N—H…O hydrogen bond involving two cytosine molecules is also present. In compound ( III ), one zinc‐coordinated 5FC ligand is cocrystallized with another uncoordinated 5FC molecule. The ZnII atom coordinates to the N(1) atom (systematic numbering) of 5FC, displacing the proton to the N(3) position. This N(3)—H tautomer of 5FC mimics N(3)‐protonated cytosine in forming a base pair (via three hydrogen bonds) with 5FC in the lattice, generating two fused R22(8) motifs. The distorted tetrahedral geometry around zinc is completed by two bromide ions and a water molecule. The coordinated and nonccordinated 5FCs are stacked over one another along the a‐axis direction, forming the rungs of a ladder motif, whereas Zn—Br bonds and N—H…Br hydrogen bonds form the rails of the ladder. The coordinated water molecules bridge the two types of 5FC molecules via O—H…O hydrogen bonds. The cytosine molecules are coordinated directly to the metal ion in each of the complexes and are hydrogen bonded to the bromide, iodide or nitrate ions. In compound ( III ), the uncoordinated 5FC molecule pairs with the coordinated 5FC ligand through three hydrogen bonds. The crystal structures are further stabilized by N—H…O, N—H…N, O—H…O, N—H…I and N—H…Br hydrogen bonds, and stacking interactions.  相似文献   

20.
Two dibenzyltin(IV) complexes with thiobenzoate ligand, (PhCH2)2Sn(SOCPh)2 (1) and (PhCH2)2Sn(C1)SOCPh (2), have been synthesized by the reaction of dibenzyltin(IV) dichloride with thiobenzoic acid in the presence of organic base Et3N and characterized by IR, ^1H NMR spectroscopy and elemental analysis. Their crystal structures were determined by X-ray single crystal diffraction analysis. In the crystals of 1, the tin atom is six-coordinated in a distorted octahedron configuration. In the crystals of 2, the molecular packing in unit cell reveals that the two adjacent molecules are symmetrically linked to each other to form a dimer with intermolecular Sn…C1 distances of 0.3591 (2) nm and the tin atom is five-coordinated in a distorted trigonal bipyramid configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号