首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Five diorganotin(IV) derivatives of L‐cysteine have been synthesized and characterized by 1H, 13C, 119Sn NMR, and IR spectroscopies along with elemental analyses. The diorganotin(IV) complexes were readily obtained from the reactions of diorganotin(IV) dichlorides and L ‐cysteine. The crystal structure of [(CH3)2Sn(L ‐C3H5NO2S)·H2O] contains a one dimensional infinite “S” conformation polymeric chain, with the L ‐cysteine acting as a bridged tridentate ligand. The tin(IV) atom, bonding to two methyl carbons, amino nitrogen atom, thiol sulfur atom, and carboxylate oxygen atom, has a five‐coordinated trigonal bipyramid environment. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:636–641, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10218  相似文献   

2.
Complexes [Me2SnL2 ( I ), Me3SnL ( II ), Et2SnL2 ( III ), n‐Bu2SnL2 ( IV ), n‐Bu3SnL ( V ), n‐Oct2SnL2 ( VI )], where L is (E)‐3‐furanyl‐2‐phenyl‐2‐propenoate, have been synthesized and structurally characterized by vibrational and NMR (1H, 13C and 119Sn) spectroscopic techniques in combination with mass spectrometric and elemental analyses. The IR data indicate that in both the di‐ and triorganotin(IV) carboxylates the ligand moiety COO acts as a bidentate group in the solid state. The 119Sn NMR spectroscopic data, 1J[119Sn,13C] and 2J[119Sn, 1H], coupling constants show a four‐coordinated environment around the tin atom in triorganotin(IV) and five‐coordinated in diorganotin(IV) carboxylates in noncoordinating solvents. The complexes have been screened against bacteria, fungi, and brine‐shrimp larvae to assess their biological activity. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:612–620, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20488  相似文献   

3.
Eight tri‐ and diorganotin(IV) carboxylates with general formulae R3SnL and R2SnL2 (where R = CH3, n‐C4H9, C6H5, C7H7, and L = 2′,4′‐difluoro‐4‐hydroxy‐[1,1′]‐biphenyl‐3‐carboxylic acid) were synthesized and characterized by UV–vis, IR, conductance, multinuclear (1H, 13C, and 119Sn) NMR spectroscopy, and mass spectrometry. The crystal structure of [(CH3)3Sn(C13H7O3F2)] indicates that the tin atom in the asymmetric unit exists in a trigonal bipyramidal geometry having a space group Pbca with an orthorhombic crystal system. These complexes were also screened for their antibacterial and antifungal activities. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:638–649, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10057  相似文献   

4.
A series of diorganotin complexes with Schiff base ligands, (E)‐N′‐(5‐bromo‐2‐hydroxybenzylidene)‐3‐hydroxy‐2‐naphthohydrazide, H2L1, and (E)‐N′‐(5‐chloro‐2‐hydroxybenzylidene)‐3‐hydroxy‐2‐naphthohydrazide, H2L2, were synthesized and characterized by elemental analysis, IR, 1H, 13C and 119Sn NMR spectroscopy. The molecular structures of the complexes, [(5‐bromo‐2‐oxidobenzylidene)‐3‐hydroxy‐2‐naphthohydrazidato]di(o‐chlorobenzyl)tin(IV) 6 and [(5‐chloro‐2‐oxidobenzylidene)‐3‐hydroxy‐2‐naphthohydrazidato]dibutyltin(IV) 9, were determined through single‐crystal X‐ray diffraction and revealed a distorted trigonal‐bipyramidal configuration. The in vitro cytotoxic activity of the Schiff bases and their diorganotin complexes was also evaluated against several human carcinoma cell lines, namely HT29 (human colon carcinoma cell line), SKOV‐3 (human ovarian cancer cell line), MCF7 (hormone‐dependent breast carcinoma cell line) and MRC5 (non‐cancer human fibroblast cell line). [(5‐Bromo‐2‐oxidobenzylidene)‐3‐hydroxy‐2‐naphthohydrazidato]dibutyltin(IV) 2 and [(5‐bromo‐2‐oxidobenzylidene)‐3‐hydroxy‐2‐naphthohydrazidato]dibenzyltin(IV) 5 were the most active diorganotin complexes of H2L1 ligand. Among the diorganotin complexes of H2L2 ligand, [(5‐chloro‐2‐oxidobenzylidene)‐3‐hydroxy‐2‐naphthohydrazidato]dicyclohexyltin(IV) 11 showed good cytotoxic activity against all the tested cell lines. As such, the above compounds can be considered agents with potential anticancer activities, and can therefore be investigated further in in vitro or in vivo anticancer studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The reaction of N‐methyl‐2,2′‐diphenolamine 1 and 2,2′‐diphenolamine 2 with some diorganotin(IV) oxides [R1/2SnO: R1 = Me, n‐Bu, t‐Bu and Ph] led to the syntheses of diorgano[N‐methyl‐2,2′‐diphenolato‐O,O′,N]tin (IV) 3–6 and diorgano[2,2′‐diphenolato‐O,O′,N]tin (IV) 7–9 . All compounds (except 7 ) studied in this work were characterized by 1H, 13C, 119Sn NMR, infrared, and mass spectroscopy. Their 119Sn NMR data show that the tin atom is tetracoordinated in CDCl3 but penta and hexacoordinated in DMSO‐d6. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 133–139, 1999  相似文献   

6.
New diorganotin(IV) complexes of a Schiff base (HL) having general formula R2Sn(L)Cl (where L is the monoanion of HL and R = n‐Bu or Ph) have been synthesized and characterized using elemental analysis, infrared, NMR (1H, 13C, 119Sn) and UV–visible spectroscopies and mass spectrometry. These investigations suggest that in these 1:1 monomeric derivatives the Schiff base ligand acts in a monoanionic bidentate manner coordinating through the Ophenolic and Nazomethine, with proposed distorted trigonal bipyramidal geometry around tin with Ophenolic and two organic groups in the equatorial plane and the Nazomethine and the third organic group in axial positions. The proposed structures have been validated by density functional theory (DFT)‐based quantum chemical calculations at the B3LYP/6‐31G(d,p)/Def2‐SVP (Sn) level of theory. The simulated UV–visible spectrum was obtained with the time‐dependent DFT method in the gas phase and in the solvent field with the integral equation formalism–polarizable continuum model. A comparative analysis of the experimental vibrational frequencies and simulated harmonic frequencies indicates a good correlation between them. An insight into the intramolecular bonding and interactions among bonds in organotin(IV) complexes of HL was obtained by means of natural bond orbital analysis. The topological and energetic properties of the electron density distribution for the tin–ligand interaction in R2Sn(L)Cl have been theoretically calculated at the bonds around the central tin atom in terms of atoms‐in‐molecules theory. The R2Sn(L)Cl complexes were screened for their in vitro antifungal activity against chosen fungal strains.  相似文献   

7.
The complexes Me2SnL2 ( I ), Me3SnL ( II ), Et2SnL2 ( III ), n‐Bu2SnL2 ( IV ), n‐Bu3SnL ( V ), n‐Oct2SnL2 ( VI ), Bz2SnL2 ( VII ), and Ph3SnL ( VIII ), where “L” is ( E )‐3‐(3‐fluorophenyl)‐2‐phenyl‐2‐propenoate, have been prepared and structurally characterized by means of elemental analysis, infrared, mass, and multinuclear (1H, 13C, 119Sn) NMR spectral techniques. The spectroscopic results showed that the geometry around the Sn atom in triorganotin(IV) derivatives is four‐coordinated in noncoordinating solvent and behaves as five‐coordinated linear polymers with bridging carboxylate groups or five‐coordinated monomers, both acquiring trans‐R3SnO2 geometry for Sn in the solid state. While all the diorganotin(IV) derivatives may acquire trigonal bipyramidal structures in solution due to collapse of the Sn←OCO interaction and octahedral geometries in the solid state, which have been confirmed by the X‐ray crystallographic data of the compound III . The crystal structure of Et2SnL2 ( III ) has been determined by X‐ray crystallography and is found skew‐trapezoidal bipyramidal, which substantiates that the ligand acts as an anisobidentate chelating agent, thus rendering the Sn atom six coordinated. The crystal is monoclinic with space group C21/n. All the investigated compounds have also been screened for biocidal and cytotoxicity data. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:420–432, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20243  相似文献   

8.
The synthesis and characterization of some novel compounds of organotin(IV) chlorides with monomethyl glutarate is reported; the ligand molecule appears to be bound to the tin atom through the carbonyl oxygen. The results obtained through 1H‐13C‐119Sn NMR, FT‐IR and 119Sn Mössbauer spectra show that the diorganotin(IV) complexes have hexacoordination with octahedral geometry. Biological screening of the complexes reveals that the diorganotin(IV) complexes show significant activity against all microorganisms.  相似文献   

9.
The one pot reactions carried among ortho-aminophenol, R2SnO (R = Me or Ph) and acetyl acetone, 2-hydroxyacetophenone and 2-hydroxy-3-methylacetophenone led to six new diorganotin(IV) compounds Me2SnL1 (1), Ph2SnL1 (2), Me2SnL2 (3) Ph2SnL2 (4), Me2SnL3 (5) and Ph2SnL3 (6) (H2L1 = 2-(3-hydroxy-1-methyl-but-2-enylideneamino)-phenol, H2L2 and H2L3 = 2-[1-(2-hydroxyaryl)alkylideneamino]-phenol) in good yields. Combination of IR, 1H, 13C and 119Sn NMR and X-ray diffraction techniques along with elemental analyses evidenced the formation of penta-coordinated monomeric species. The crystal structures of ligand H2L1 and complexes 1, 3 and 4 were determined by single crystal X-ray diffraction study. In the solid state, the ligand H2L1 exists as keto-enamine tautomeric form. There are N-H…O intra-molecular hydrogen bonds between amine and carbonyl groups. Diorganotin(IV) complexes 1, 3 and 4 are monomers with TBP (trigonal bipyramidal) geometry surrounding the tin atom. The O, N, O- tridentate ligand places its two oxygen donating atoms in the axial positions, and the nitrogen atom occupies one equatorial position. The two R groups attached to tin occupy the other two equatorial positions. The solution structures were predicted by 119Sn NMR spectroscopy.  相似文献   

10.
The reaction of 4,4′‐bipy with dimethyltin(IV) chloride iso‐thiocyanate affords the one‐dimensional (1D) coordination polymer, [Me2Sn(NCS)Cl·(4,4′‐bipy)]n ( 1 ), whereas reaction of dimethyltin(IV) dichloride with sodium pyrazine‐2‐carboxylate in the presence of potassium iso‐thiocyanate affords the two‐dimensional (2D) coordination polymer, {[Me2Sn(C4H3N2COO)2]2 [Me2Sn(NCS)2]}n ( 2 ). Both coordination polymers were characterized by elemental analysis and infrared spectroscopy in addition to 1H and 13C NMR spectroscopy of the soluble coordination polymer ( 1 ). A single‐crystal structure determination showed that the asymmetric unit in 1 contains Me2Sn(NCS)Cl and 4,4′‐bipy moieties and a 1D infinite rigid chain structure forms through bridging of the 4,4′‐bipy ligand between tin atoms and the geometry around the tin atom is a distorted octahedral. Coordination polymer 2 contains two distinct tin atom geometrics in which one tin atom is seven coordinate, and the other is six coordinate. The two tin atom environments are best described as a pentagonal bipyramidal in the former and distorted octahedral in the latter where the carboxylate groups bridge the two tin atoms and construct a 2D‐coordination polymer. The 119Sn NMR spectroscopy indicates the octahedral geometry of 1 retains in solution. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 22:699–706, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/.20736  相似文献   

11.
A series of organotin(IV) complexes with 2‐mercapto‐5‐methyl‐1,3,4‐thiadiazole (HL) of the type R3 Sn(L) (R = Me 1 ; Bu 2 ; Ph 3 ; PhCH2 4 ) and R2Sn(L)2 (R = CH3 5 ; Ph 6 ; PhCH2 7 ; Bu 8 ) have been synthesized. All complexes 1–8 were characterized by elemental analysis, IR,1H, 13 C, and 119Sn NMR spectra. Among these, complexes 1 , 3 , 4 , and 7 were also determined by X‐ray crystallography. The tin atoms of complexes 1 , 3 , and 4 are all penta‐coordinated and the geometries at tin atoms of complexes 3 and 4 are distorted trigonal–bipyramidal. Interestingly, complex 1 has formed a 1D polymeric chain through Sn and N intermolecular interactions. The tin atom of complex 7 is hexa‐coordinated and its geometry is distorted octahedral. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:353–364, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20215  相似文献   

12.
Diorganotin(IV) dipyrazolinates of the type R2Sn(C15H12N2OX)2 [where C15H12N2OX = 3(2′‐Hydroxyphenyl)‐5(4‐X‐phenyl)pyrazoline {where X = H ( a ); CH3 ( b ); OCH3 ( c ); Cl ( d ) and R = Me, Prn and Ph}] have been synthesized by the reaction of R2SnCl2 with sodium salt of pyrazolines in 1:2 molar ratio, in anhydrous benzene. These newly synthesized derivatives have been characterized by elemental analysis (C, H, N, Cl and Sn), molecular weight measurement as well as spectral [IR and multinuclear NMR (1H, 13C and 119Sn)] studies. The bidentate behaviour of the pyrazoline ligands was confirmed by IR, 1H and 13C NMR spectral data. A distorted trans‐octahedral structure around tin(IV) atom for R2Sn(C15H12N2OX)2 has been suggested. The free pyrazoline and diorganotin(IV) dipyrazolinates have also been screened for their antibacterial and antifungal activities. Some diorganotin(IV) dipyrazolinates exhibit higher antibacterial and antifungal effect than free ligand and some of the antibiotics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Four new diethyltin N‐[(2‐oxyphenyl)methylene]phenylalaninates, (CH3CH2)2Sn[2‐O‐3‐X‐5‐YC6H2CH?NCH(CH2Ph)COO] (X, Y = H, H, 1 ; H, Br, 2 ; H, OCH3, 3 ; Br, Br, 4 ), have been synthesized and characterized using elemental analysis and infrared and NMR (1H, 13C and 119Sn) spectra. The crystal structures of 1 , 2 , 3 , 4 have been determined. Compounds 1 and 2 have a 12‐membered macrocyclic structure with a trimeric [Sn3O6C3] core. Each tin atom is six‐coordinated in distorted [SnC2NO3] octahedral geometry. Compound 3 is a centrosymmetric weak dimer in which the two tin centers are linked by two asymmetric Sn? O???Sn bridges involving the phenolic oxygen of the ligand and two Sn???O interactions from ether oxygen of the adjacent ligand. The coordination geometry of the tin atom can be described as a distorted pentagonal bipyramid with two ethyl groups in axial positions. Compound 4 is a novel binuclear tin complex, formed by the carboxylate of a ligand asymmetrically bridging two tin atoms, which contains a five‐coordinated tin and a six‐coordinated tin. Bioassay results have shown that the compounds have weak in vitro activity against two human tumor cell lines, A549 and CoLo205. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Fourteen new diorganotin(IV) complexes of N‐(5‐halosalicylidene)‐α‐amino acid, R′2Sn(5‐X‐2‐OC6H3CH?NCHRCOO) (where X = Cl, Br; R = H, Me, i‐Pr; R′ = n‐Bu, Ph, Cy), were synthesized by the reactions of diorganotin halides with potassium salt of N‐(5‐halosalicylidene)‐α‐amino acid and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of Bu2Sn(5‐Cl‐2‐OC6H3CH?NCH(i‐Pr)COO) and Ph2Sn(5‐Br‐2‐OC6H3CH?NCH(i‐Pr)COO) were determined by X‐ray single‐crystal diffraction and showed that the tin atoms are in a distorted trigonal bipyramidal geometry and form five‐ and six‐membered chelate rings with the tridentate ligand. Bioassay results of a few compounds indicated that the compounds have strong cytotoxic activity against three human tumour cell lines, i.e. HeLa, CoLo205 and MCF‐7, and the activity decreased in the order Cy>n‐Bu>Ph for the R′ group bound to tin. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

16.
Two new dinuclear phenyltin(IV) complexes derived from N,N′‐bis(2‐hydroxybenzyl)‐1,2‐ethanebis(dithiocarbamate) ligand, [2‐HOC6H4CH2N(CS2SnPh3)CH2]2 ( 1 ) and [2‐HOC6H4CH2N(CS2SnClPh2)CH2]2 ( 2 ) have been synthesized and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of complexes 1 and 2 were determined by X‐ray single crystal diffraction and show that the dithiocarbamate ligand is coordinated to the tin atom in the anisobidentate manner and the tin atom is five‐coordinated. The coordination geometry of tin atom is best described as an intermediate between trigonal bipyramidal and square pyramidal with τ‐values of 0.63 and 0.53, respectively. Intermolecular hydrogen bonds (O H···S and O H···Cl) in 1 and 2 connect neighboring molecules into a one‐dimensional supramolecular chain with the centrosymmetric cyclic motifs. Complex 1 has potent in vitro cytotoxic activity against two human tumor cell lines, CoLo205 and Bcap37, while complex 2 displays weak cytotoxic activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Three 4‐(ethylaminodithiocarbamate) methylpyridine diorganotin derivatives were prepared using a one‐pot synthetic procedure from 4‐(ethylaminomethyl)pyridine, carbon disulfide, KOH as a base, and the corresponding diorganotin dichloride (R = Me, nBu, Ph). All three compounds were successfully characterized in solution (1H, 13C, and 119Sn NMR) as well as in the solid state (IR, mass spectrometry, and X‐ray diffraction). In all three cases, an anisobidentate coordination mode was observed for the dithiocarbamate moiety to the tin atom, evidenced mainly by the different Sn S bond distances obtained from the X‐ray diffraction analysis. The organic groups attached to the tin atom have no influence on the reaction course, leading in each case to the formation of mononuclear complexes with the metal center in a hexacoordinated environment. Interestingly, in the solid state the methyl‐tin derivative showed Pyċn and SċSn intermolecular interactions, which were not observed in the two other complexes. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:422–428, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21032  相似文献   

18.
Abstract

Organotin complexes with the general formulae R2SnL2, R2Sn(Cl)L, and R3SnL have been synthesized where R = CH3, n-C4H6, C6H5, C6H11, and L = 4-(hydroxy methyl)piperidine-1-carbodithioic acid. The newly synthesized complexes have been characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn), and, for one example, a single crystal x-ray structure. The FT-IR data shows the bidentate nature of the ligand. This coordination behavior is also confirmed by semi-empirical study. In the solid state, diorganotin complexes exhibit the penta/hexacoordinated geometry, whereas the triorganotin(IV) complexes show the five coordinated geometry. 119Sn NMR data reveal that triorganotin(IV) complexes exhibit the four coordinated geometry in solution, whereas the diorganotin(IV) compounds show the higher coordination, probably five or six. X-ray diffraction analysis of complex (2) shows a square pyramidal geometry around the tin atom on the basis of τ value.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.

GRAPHICAL ABSTRACT   相似文献   

19.
《Polyhedron》1999,18(20):2687-2696
Diorganotin(IV) complexes of the general formula R2SnL (R=Ph, n-Bu and Me) have been prepared from diorganotin(IV) dichlorides (R2SnCl2) and tetradentate Schiff bases (H2L) containing N2O2 donor atoms in the presence of triethylamine in benzene. The Schiff bases, H2L, were derived from salicylaldehyde, 3-methoxysalicylaldehyde (o-vanillin), 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and diamines such as o-phenylenediamine and 1,3-propylenediamine. The complexes were characterized by IR, NMR (1H, 13C, 119Sn) and elemental analysis. The structure of the complex, n-Bu2Sn(Vanophen), was determined using single crystal X-ray diffraction. The tin atom has a distorted octahedral coordination, with the Vanophen ligand occupying the four equatorial positions and the n-butyl groups in the trans axial positions. Six-coordinated distorted octahedral structures have been proposed for all diorganotin(IV) complexes studied here, as they possess similar spectroscopic data.  相似文献   

20.
The diorganotin(IV) complexes, R2Sn(dtbu) (R = Me 1 , n‐Bu 2 , Ph 3 , PhCH2 4 ; H2dtbu = 2,5‐dithiobiurea), have been synthesized and characterized by IR, 1H, and 119Sn NMR spectroscopy. The structures of 1 and 3 have been determined by X‐ray crystallography. Crystal structures show that both complexes 1 and 3 consist of molecules in which the bideprotonated ligand is N,S,S‐bonded, and the tin atom exhibits distorted pentacoordination with small differences between the methyl and phenyl derivatives in bond distances and bond angles. The unusual coordination mode of the dtbu2− anion creates four‐ and five‐membered chelate rings. Moreover, the packing of complexes 1 and 3 are stabilized by the hydrogen bonding. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:93–98, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20173  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号