首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a general class of impulsive delayed switched systems is considered. By employing the Lyapunov–Razumikhin method and some analysis techniques, we established several global asymptotic stability and global exponential stability criteria for the considered impulsive delayed switched systems, which improve and extend some recent works. As an application, the result of global exponential stability are used to study a class of uncertain linear switched systems with time‐varying delays. Several LMI‐based conditions are proposed to guarantee the global robust stability and global exponential stabilization. The designed memoryless state feedback controller can be easily checked by the LMI toolbox in Matlab. Moreover, the dwell time constraint is imposed for the switching law. Finally, two numerical examples and their simulations are given to show the effectiveness of our proposed results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we derive some less stringent conditions for the exponential and asymptotic stability of impulsive control systems with impulses at fixed times. These conditions are then used to design an impulsive control law for the Quantum Cellular Neural Network chaotic system, which drives the chaotic state to zero equilibrium and synchronizes two chaotic systems. An active sliding mode control method is synchronizing two chaotic systems and controlling chaotic state to periodic motion state. And a sufficient condition is drawn for the robust stability of the error dynamics, and is applied to guiding the design of the controllers. Finally, numerical results are used to show the robustness and effectiveness of the proposed control strategy.  相似文献   

3.
This paper addresses the design of simple state feedback controllers for synchronization and anti-synchronization of chaotic oscillators under input saturation and disturbance. By employing sector condition, linear matrix inequality (LMI)-based sufficient conditions are derived to design (global or local) controllers for chaos synchronization. The proposed local synchronization strategy guarantees a region of stability in terms of difference between states of the master–slave systems. This region of stability can be enlarged by means of an LMI-based optimization algorithm, through which asymptotic synchronization of chaotic oscillators can be ensured for a large difference in their initial conditions. Further, a novel LMI-based robust control strategy is developed, for local synchronization of input-constrained chaotic oscillators, by providing an upper bound on synchronization error in terms of disturbance and initial conditions of chaotic systems. Moreover, the proposed robust state feedback control methodology is modified to provide an inaugural treatment for robust anti-synchronization of chaotic systems under input saturation and disturbance. The results of the proposed methodologies are verified through numerical simulations for synchronization and anti-synchronization of the master–slave chaotic Chua’s circuits under input saturation.  相似文献   

4.
This paper deals with the uncertain class of continuous-time linear systems with Markovian jumping parameters and multiplicative Brownian disturbance. A design method for a nonfragile robust controller for this class of systems is proposed when the uncertainties are of the norm-bounded type. An LMI based sufficient condition is developed. The methodology used is based mainly on the Lyapunov approach. A numerical example is presented to show the usefulness of the proposed results.  相似文献   

5.
This paper deals with the uncertain class of continuous-time linear systems with Markovian jumping parameters. A design method for a nonfragile robust controller for this class of systems is proposed when the uncertainties in the system matrices are of the norm-bounded type. An LMI based sufficient condition is developed. The methodology used is based mainly on the Lyapunov approach. A numerical example is presented to show the usefulness of the proposed results.  相似文献   

6.
This paper investigates the quadratic optimal synchronization of uncertain chaotic systems with parameter mismatch, parametric perturbations and external disturbances on both master and slave systems. A robust control scheme based on Lyapunov stability theory and quadratic optimal control approach is derived to realize chaotic synchronization. The sufficient criterion for stability condition is formulated in a linear matrix inequality (LMI) form. The effect of uncertain parameters and external disturbance is suppressed to an H norm constraint. An adaptive algorithm is proposed to adjust the uncertain bound in the robust controller avoiding the chattering phenomena. The simulation results for synchronization of the Chua’s circuit system and the Lorenz system demonstrate the effectiveness of the proposed scheme.  相似文献   

7.
This paper considers the chaotic synchronization problem of neural networks with time-varying and distributed delays using impulsive control method. By utilizing the stability theory for impulsive functional differential equations, several impulsive control laws are derived to guarantee the exponential synchronization of neural networks with time-varying and distributed delays. It is shown that chaotic synchronization of the networks is heavily dependent on the designed impulsive controllers. Moreover, these conditions are expressed in terms of LMI and can be easily checked by MATLAB LMI toolbox. Finally, a numerical example and its simulation are given to show the effectiveness and advantage of the proposed control schemes.  相似文献   

8.
Abstract

This article is concerned with the problem of guaranteed cost control for a class of uncertain stochastic impulsive systems with Markovian switching. To the best of our knowledge, it is the first time that such a problem is investigated for stochastic impulsive systems with Markovian switching. For an uncontrolled system, the conditions in terms of certain linear matrix inequalities (LMIs) are obtained for robust stochastical stability and an upper bound is given for the cost function. For the controlled systems, a set of LMIs is developed to design a linear state feedback controller which can stochastically stabilize the class of systems under study and guarantee the given cost function to have an upper bound. Further, an optimization problem with LMI constraints is formulated to minimize the guaranteed cost of the closed-loop system. Finally, a numerical example is provided to show the effectiveness of the proposed method.  相似文献   

9.
In this paper, by utilizing impulsive control theory and T-S fuzzy model, the fuzzy impulsive control and synchronization of general chaotic system are proposed. Some less conservative and more general conditions are obtained to guarantee the globally asymptotical stability for the impulsive control and synchronization of general chaotic system based on T-S fuzzy model. Moreover, some criteria of globally exponential stability of chaotic system are also derived. Finally, some numerical simulations are given to demonstrate the effectiveness of the proposed control method.  相似文献   

10.
The problem of impulsive generalized synchronization for a class of nonlinear discrete chaotic systems is investigated in this paper. Firstly the response system is constructed based on the impulsive control theory. Then by the asymptotic stability criteria of discrete systems with impulsive effects, some sufficient conditions for asymptotic H-synchronization between the drive system and response system are obtained. Numerical simulations are given to show the effectiveness of the proposed method.  相似文献   

11.
In this paper, a robust intelligent sliding model control (RISMC) scheme using an adaptive recurrent cerebellar model articulation controller (RCMAC) is developed for a class of uncertain nonlinear chaotic systems. This RISMC system offers a design approach to drive the state trajectory to track a desired trajectory, and it is comprised of an adaptive RCMAC and a robust controller. The adaptive RCMAC is used to mimic an ideal sliding mode control (SMC) due to unknown system dynamics, and a robust controller is designed to recover the residual approximation error for guaranteeing the stable characteristic. Moreover, the Taylor linearization technique is employed to derive the linearized model of the RCMAC. The all adaptation laws of the RISMC system are derived based on the Lyapunov stability analysis and projection algorithm, so that the stability of the system can be guaranteed. Finally, the proposed RISMC system is applied to control a Van der Pol oscillator, a Genesio chaotic system and a Chua’s chaotic circuit. The effectiveness of the proposed control scheme is verified by some simulation results with unknown system dynamics and existence of external disturbance. In addition, the advantages of the proposed RISMC are indicated in comparison with a SMC system.  相似文献   

12.
In this paper, we aim to study the robust global exponential synchronization problem for a general class of Lur’e chaotic systems subject to time delays and impulsive disturbances. Furthermore, we also provide an estimation of the maximum Lyapunov exponent. By using the Lyapunov function method and linear matrix inequality (LMI) technique, sufficient conditions for the robust global exponential synchronization and estimation of its maximum Lyapunov exponent are obtained for the class of Lur’e chaotic systems with and without time delays, respectively. Furthermore, by applying the M-matrix theory, some of these sufficient conditions are shown to be expressible in forms of fairly simple algebraic conditions. For illustration, several examples are solved by using the sufficient conditions obtained.  相似文献   

13.
Based on the Lyapunov stability theory and LMI technique, a new sufficient criterion, formulated in the LMI form, is established in this paper for chaos robust synchronization by linear-state-feedback approach for a class of uncertain chaotic systems with different parameters perturbation and different external disturbances on both master system and slave system. The new sufficient criterion can guarantee that the slave system will robustly synchronize to the master system at an exponential convergence rate. Meanwhile, we also provide a criterion to find out proper feedback gain matrix KK that is still a pending problem in literature [H. Zhang, X.K. Ma, Synchronization of uncertain chaotic systems with parameters perturbation via active control, Chaos, Solitons and Fractals 21 (2004) 39–47]. Finally, the effectiveness of the two criteria proposed herein is verified and illustrated by the chaotic Murali–Lakshmanan–Chua system and Lorenz systems, respectively.  相似文献   

14.
Combining Takagi–Sugeno (TS) fuzzy model and impulsive control, a new approach to control chaotic systems, namely fuzzy impulsive control, is proposed in this paper. The rigorous stability analysis of the proposed method is given. The effectiveness of the approach is tested on Chua’s circuit, Chen’s system and Rössler’s system.  相似文献   

15.
In this paper, impulsive control for master–slave synchronization schemes consisting of identical chaotic neural networks is studied. Impulsive control laws are derived based on linear static output feedback. A sufficient condition for global asymptotic synchronization of master–slave chaotic neural networks via output feedback impulsive control is established, in which synchronization is proven in terms of the synchronization errors between the full state vectors. An LMI-based approach for designing linear static output feedback impulsive control laws to globally asymptotically synchronize chaotic neural networks is discussed. With the help of LMI solvers, linear output feedback impulsive controllers can be easily obtained along with the bounds of the impulsive intervals for global asymptotic synchronization. The method is finally illustrated by numerical simulations.  相似文献   

16.
This paper considers sampled-data based chaos synchronization using observers in the presence of measurement noise for a large class of chaotic systems. We study discretized model of chaotic systems which are perturbed by white noise and employ Lyapunov-like theorems to come up with a simple yet effective observer design. For the choice of observer gain, a suboptimal criterion is obtained in terms of LMI. We present semiglobal as well as global results. The proposed scheme can also be extended for discrete-time chaotic systems. Numerical simulations have been carried out to verify the effectiveness of theoretical results.  相似文献   

17.
Based on stability theory of impulsive differential equation and new comparison theory of impulsive differential system, we study the chaos impulsive synchronization of two coupled chaotic systems using the unidirectional linear error feedback scheme. Some generic conditions of chaos impulsive synchronization of two coupled chaotic systems are derived, and to apply the conditions to typical chaotic system––the original Chua’s circuit. The example illustrates the effectiveness of the proposed result.  相似文献   

18.
This paper investigates the chaos control problem for a general class of chaotic systems. A feedback controller is established to guarantee asymptotical stability of the chaotic systems based on the sliding mode control theory. A new reaching law is introduced to solve the chattering problem that is produced by traditional sliding mode control. A dynamic compensator is designed to improve the performance of the closed-loop system in sliding mode, and its parameter is obtained from a linear matrix inequality (LMI). Simulation results for the well known Chua’s circuit and Lorenz chaotic system are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

19.
针对带有状态滞后的连续广义系统,给出了其广义二次稳定且满足一定H∞性能的充分条件,并利用线性矩阵不等式技术,得到了带有状态滞后和不确定性的连续广义系统的含有控制器增益扰动的鲁棒H∞控制器的设计方法.最后,所举数值例子说明了该方法的应用.  相似文献   

20.
Complex nonlinear systems can be represented to a set of linear sub-models by using fuzzy sets and fuzzy reasoning via ordinary Takagi-Sugeno (TS) fuzzy models. In this paper, the exponential stability of TS fuzzy bidirectional associative memory (BAM) neural networks with impulsive effect and time-varying delays is investigated. The model of fuzzy impulsive BAM neural networks with time-varying delays established as a modified TS fuzzy model is new in which the consequent parts are composed of a set of impulsive BAM neural networks with time-varying delays. Further the exponential stability for fuzzy impulsive BAM neural networks is presented by utilizing the Lyapunov-Krasovskii functional and the linear matrix inequality (LMI) technique without tuning any parameters. In addition, an example is provided to illustrate the applicability of the result using LMI control toolbox in MATLAB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号