首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对Lurie混沌控制系统,进行了T-S模糊建模和模糊控制器设计,从而实现了Lurie混沌系统的稳定.在用T-S模糊模型精确重构Lurie系统结构的基础上,利用反馈同步思想,基于并行分布补偿(PDC)技术,得到了简单且易实现的控制器.仿真结果验证了该控制方法的有效性.  相似文献   

2.
针对模糊控制系统提出了一种新的稳定性设计方法.该方法在传统T-S模型的局部子系统中引入脉冲控制项,构造了具有脉冲影响的模糊控制系统.然后,通过去模糊化技术,把具有脉冲影响的模糊系统转化为脉冲微分系统.这样,借助脉冲微分方程的比较原理和线性矩阵不等式技术,给出了模糊系统的脉冲稳定的充分条件.从而建立了模糊系统的简单脉冲控制策略.  相似文献   

3.
This paper investigates drive-response synchronization of chaotic systems with discontinuous right-hand side. Firstly, a general model is proposed to describe most of known discontinuous chaotic system with or without time-varying delay. An uniform impulsive controller with multiple unknown time-varying delays is designed such that the response system can be globally exponentially synchronized with the drive system. By utilizing a new lemma on impulsive differential inequality and the Lyapunov functional method, several synchronization criteria are obtained through rigorous mathematical proofs. Results of this paper are universal and can be applied to continuous chaotic systems. Moreover, numerical examples including discontinuous chaotic Chen system, memristor-based Chua’s circuit, and neural networks with discontinuous activations are given to verify the effectiveness of the theoretical results. Application of the obtained results to secure communication is also demonstrated in this paper.  相似文献   

4.
The present paper investigates the issues of impulsive synchronization seeking in general complex delayed dynamical networks with nonsymmetrical coupling. By establishing the extended Halanay differential inequality on impulsive delayed dynamical systems, some simple yet generic sufficient conditions for global exponential synchronization of the impulsive controlled delayed dynamical networks are derived analytically. Compared with some existing works, the distinctive features of these sufficient conditions indicate two aspects: on the one hand, these sufficient conditions can provide an effective impulsive control scheme to synchronize an arbitrary given delayed dynamical network to a desired synchronization state even if the original given network may be asynchronous itself. On the other hand, the controlled synchronization state can be selected as a weighted average of all the states in the network for the purpose of practical control strategy, which reveals the contributions and influences of various nodes in synchronization seeking processes of the dynamical networks. It is shown that impulses play an important role in making the delayed dynamical networks globally exponentially synchronized. Furthermore, the results are applied to a typical nearest-neighbor unidirectional time-delay coupled networks composed of chaotic FHN neuron oscillators, and numerical simulations are given to demonstrate the effectiveness of the proposed control methodology.  相似文献   

5.
Combining Takagi–Sugeno (TS) fuzzy model and impulsive control, a new approach to control chaotic systems, namely fuzzy impulsive control, is proposed in this paper. The rigorous stability analysis of the proposed method is given. The effectiveness of the approach is tested on Chua’s circuit, Chen’s system and Rössler’s system.  相似文献   

6.
针对一类非线性时滞混沌系统,提出了一种新的自适应脉冲同步方案.首先基于Lyapunov稳定性理论、自适应控制理论及脉冲控制理论设计了自适应控制器、脉冲控制器及参数自适应律,然后利用推广的Barbalat引理,理论证明响应系统与驱动系统全局渐近同步,并给出了相应的充分条件.方案利用参数逼近Lipschitz常数,从而取消了Lipschitz常数已知的假设.两个数值仿真例子表明本方法的有效性.  相似文献   

7.
The problem of impulsive generalized synchronization for a class of nonlinear discrete chaotic systems is investigated in this paper. Firstly the response system is constructed based on the impulsive control theory. Then by the asymptotic stability criteria of discrete systems with impulsive effects, some sufficient conditions for asymptotic H-synchronization between the drive system and response system are obtained. Numerical simulations are given to show the effectiveness of the proposed method.  相似文献   

8.
This paper proposes a synchronization design scheme based on an alternative indirect adaptive fuzzy observer and its application to secure communication of chaotic systems. It is assumed that their states are unmeasurable and their parameters are unknown. Chaotic systems and the structure of the fuzzy observer are represented by the Takagi–Sugeno fuzzy model. Using Lyapunov stability theory, an adaptive law is derived to estimate the unknown parameters and the stability of the proposed system is guaranteed. Through this process, the asymptotic synchronization of chaotic systems is achieved. The proposed observer is applied to secure communications of chaotic systems and some numerical simulation results show the validity of theoretical derivations and the performance of the proposed observer.  相似文献   

9.
In this paper, impulsive control for master–slave synchronization schemes consisting of identical chaotic neural networks is studied. Impulsive control laws are derived based on linear static output feedback. A sufficient condition for global asymptotic synchronization of master–slave chaotic neural networks via output feedback impulsive control is established, in which synchronization is proven in terms of the synchronization errors between the full state vectors. An LMI-based approach for designing linear static output feedback impulsive control laws to globally asymptotically synchronize chaotic neural networks is discussed. With the help of LMI solvers, linear output feedback impulsive controllers can be easily obtained along with the bounds of the impulsive intervals for global asymptotic synchronization. The method is finally illustrated by numerical simulations.  相似文献   

10.
Based on stability theory of impulsive differential equation and new comparison theory of impulsive differential system, we study the chaos impulsive synchronization of two coupled chaotic systems using the unidirectional linear error feedback scheme. Some generic conditions of chaos impulsive synchronization of two coupled chaotic systems are derived, and to apply the conditions to typical chaotic system––the original Chua’s circuit. The example illustrates the effectiveness of the proposed result.  相似文献   

11.
Song Zheng 《Complexity》2015,21(2):333-341
This article investigates the function projective synchronization (FPS) for a class of time‐delay chaotic system via nonlinear adaptive‐impulsive control. To achieve the FPS, suitable nonlinear continuous and impulsive controllers are designed based on adaptive control theory and impulsive control theory. Using the generalized Babarlat's lemma, a general condition is given to ensure the FPS. Here, the time‐delay chaotic system is assumed to satisfy the Lipschitz condition while the Lipschitz constants are estimated by augmented adaptation equations. Numerical simulation results are also presented to verify the effectiveness of the proposed synchronization scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 333–341, 2015  相似文献   

12.
This paper considers the chaotic synchronization problem of neural networks with time-varying and distributed delays using impulsive control method. By utilizing the stability theory for impulsive functional differential equations, several impulsive control laws are derived to guarantee the exponential synchronization of neural networks with time-varying and distributed delays. It is shown that chaotic synchronization of the networks is heavily dependent on the designed impulsive controllers. Moreover, these conditions are expressed in terms of LMI and can be easily checked by MATLAB LMI toolbox. Finally, a numerical example and its simulation are given to show the effectiveness and advantage of the proposed control schemes.  相似文献   

13.
This paper studies the synchronization problem of the unified chaotic system. Three different methods, linear feedback method, nonlinear feedback method and impulsive control method are used to control synchronization of the unified chaotic systems. Based on the Lyapunov stability theory and impulsive control method, the conditions of synchronization are discussed, and they are also proved theoretically. Numerical simulations show the effectiveness of the three different methods.  相似文献   

14.
In this article, a fuzzy adaptive control scheme is designed to achieve a function vector synchronization behavior between two identical or different chaotic (or hyperchaotic) systems in the presence of unknown dynamic disturbances and input nonlinearities (dead‐zone and sector nonlinearities). This proposed synchronization scheme can be considered as a generalization of many existing projective synchronization schemes (namely the function projective synchronization, the modified projective synchronization, generalized projective synchronization, and so forth) in the sense that the master and slave outputs are assumed to be some general function vectors. To practically deal with the input nonlinearities, the adaptive fuzzy control system is designed in a variable‐structure framework. The fuzzy systems are used to appropriately approximate the uncertain nonlinear functions. A Lyapunov approach is used to prove the boundedness of all signals of the closed‐loop control system as well as the exponential convergence of the corresponding synchronization errors to an adjustable region. The synchronization between two identical systems (chaotic satellite systems) and two different systems (chaotic Chen and Lü systems) are taken as two illustrative examples to show the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–249, 2016  相似文献   

15.
The issue of impulsive control theory for the synchronization of the nuclear spin generator (NSG) chaotic systems is developed. We propose an impulsive control scheme for the complete synchronization of the NSG system including chaotic systems. A sufficient condition for the impulsive control is derived, with an easily calculated maximum impulsive interval. The proposed impulsive control scheme is applied to the NSG system and the simulation result demonstrates the effectiveness of the method.  相似文献   

16.
The issues of impulsive control and synchronization of chaotic Hindmarsh–Rose model are investigated in this paper. Based on impulsive control theory of dynamical systems, some simple yet less conservative criteria ensuring impulsive stabilization and synchronization of the Hindmarsh–Rose models are derived analytically. Furthermore, two numerical results are presented to demonstrate the effectiveness of the proposed control techniques. It is shown that the obtained results should be helpful to understand dynamical mechanism of signal encoding and transduction from information processing of real neuronal activity.  相似文献   

17.
This paper focuses on the problem of impulsive synchronization of T–S fuzzy systems. A new synchronization criterion is derived for T–S fuzzy systems by utilizing the concept of average impulsive interval. The proposed impulsive control scheme has a simple control structure, and is theoretically and numerically proved to be less conservative than some existing results. The method is also illustrated by applying to Lorenz system, Rössler’s system as well as permanent magnet synchronous motors system.  相似文献   

18.
This paper addresses the problem of global finite-time synchronization of two different dimensional chaotic systems. Firstly, the definition of global finite-time synchronization of different dimensional chaotic systems are introduced. Based on the finite-time stability methods, the controller is designed such that the chaotic systems are globally synchronized in a finite time. Then, some uncertain parameters are adopted in the chaotic systems, new control law and dynamical parameter estimation are proposed to guarantee that the global finite-time synchronization can be obtained. By considering a dynamical parameter designed in the controller, the adaptive updated controller is also designed to achieve the desired results. At last, the results of two different dimensional chaotic systems are also extended to two different dimensional networked chaotic systems. Finally, three numerical examples are given to verify the validity of the proposed methods.  相似文献   

19.
In this Letter the issue of impulsive Synchronization of a hyperchaotic Lorenz system is developed. We propose an impulsive synchronization scheme of the hyperchaotic Lorenz system including chaotic systems. Some new and sufficient conditions on varying impulsive distances are established in order to guarantee the synchronizability of the systems using the synchronization method. In particular, some simple conditions are derived for synchronizing the systems by equal impulsive distances. The boundaries of the stable regions are also estimated. Simulation results show the proposed synchronization method to be effective.  相似文献   

20.
This paper presents the design scheme of the indirect adaptive fuzzy observer and controller based on the interval type-2 (IT2) T-S fuzzy model. The nonlinear systems can be well approximated by IT2 T-S fuzzy model, in which the fuzzy rules’ antecedents are interval type-2 fuzzy sets and consequents are linear state equations. The proposed IT2 T-S fuzzy model is a combination of IT2 fuzzy system and T-S fuzzy model, and also inherits the benefits of type-2 fuzzy logic systems, which is able to directly handle uncertainties and can minimize the effects of uncertainties in rule-based fuzzy system. These characteristics can improve the accuracy of the system modeling and reduce the number of system rules. The proposed method using feedback control, adaptive laws, and on-line object parameters are adjusted to ensure observation error bounded. In addition, using Lyapunov synthesis approach and Lipschitz condition, the stability analysis is conducted. The simulation results show that the proposed method can handle unpredicted disturbance and data uncertainties very well in advantage of the effectiveness of observation and control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号