首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We study a second-order central scheme for the shallow water flows with a discontinuous bottom topography based on modified hydrostatic reconstructions (HRs). The first HR scheme was proposed in Audusse et al, which may be missing the effect of the large discontinuous bottom topography. We introduce a modified HR method to cope with this numerical difficulty. The new scheme is well-balanced for still water solutions and can guarantee the positivity of the water depth. Finally, several numerical results of classical problems of the shallow water equations confirmed these properties of the new scheme. Especially, the new scheme yields superior results for the shallow water downhill flow over a step.  相似文献   

2.
We propose a new well-balanced unstaggered central finite volume scheme for hyperbolic balance laws with geometrical source terms. In particular we construct a new one and two-dimensional finite volume method for the numerical solution of shallow water equations on flat/variable bottom topographies. The proposed scheme evolves a non-oscillatory numerical solution on a single grid, avoids the time consuming process of solving Riemann problems arising at the cell interfaces, and is second-order accurate both in space and time. Furthermore, the numerical scheme follows a well-balanced discretization that first discretizes the geometrical source term according to the discretization of the flux terms, and then mimics the surface gradient method and discretizes the water height according to the discretization of the water level. The resulting scheme exactly satisfies the C-property at the discrete level. The proposed scheme is then applied and classical one and two-dimensional shallow water equation problems with flat or variable bottom topographies are successfully solved. The obtained numerical results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential and efficiency of the proposed method.  相似文献   

3.
Beam-displacement ray-mode theory of sound propagation in shallow water   总被引:3,自引:0,他引:3  
A normal mode method for propagation modeling in common horizontally stratified shallow water, which is called beam-displacement ray-mode (BDRM) theory, is introduced. The peculiarity of this method is that the boundary effects on the sound field can be expressed by the equivalent boundary reflection coefficient, so BDRM theory can be extended to elastic bottom easily. Theoretical calculations of shallow-water sound field show that BDRM has high accuracy and fast speed. The pulse propagation in shallow water is also calculated by BDRM, and the calculated waveforms are in good agreement with the measured waveforms. Project support by the National Natural Science Foundation of China (Grant No. 1973405).  相似文献   

4.
Long wave propagation in a two‐layer fluid with variable depth is studied for specific bottom configurations, which allow waves to propagate over large distances. Such configurations are found within the linear shallow‐water theory and determined by a family of solutions of the second‐order ordinary differential equation (ODE) with three arbitrary constants. These solutions can be used to approximate the true bottom bathymetry. All such solutions represent smooth bottom profiles between two different singular points. The first singular point corresponds to the point where the two‐layer flow transforms into a uniform one. In the vicinity of this point nonlinear shallow‐water theory is used and the wave breaking criterion, which corresponds to the gradient catastrophe is found. The second bifurcation point corresponds to an infinite increase in water depth, which contradicts the shallow‐water assumption. This point is eliminated by matching the “nonreflecting” bottom profile with a flat bottom. The wave transformation at the matching point is described by the second‐order Fredholm equation and its approximated solution is then obtained. The results extend the theory of internal waves in inhomogeneous stratified fluids actively developed by Prof. Roger Grimshaw, to the new solutions types.  相似文献   

5.
The problem of the impact of a box with an elastic bottom on a thin liquid layer is solved in a planar formulation in the shallow water approximation. Using the method of normal modes, the problem is reduced to a non-linear system of ordinary differential equations, which is solved by the Runge–Kutta method. It is shown that the elasticity of the bottom not only affects all the characteristics quantitatively but also qualitatively.  相似文献   

6.
A new expression for bottom friction is developed for use in two-dimensional hydrodynamical models of shallow homogeneous seas, estuaries, and lakes. Bottom stress is provided by a single relaxation approximation which can be used to replace the conventional parametrization in any existing explicit time-stepping model. The method produces the correct steady state flow for wind-driven circulation in shallow systems. It derives the bottom stress from the vertical eddy viscosity which can have any prescribed variation through the water column. The single relaxation approximation uses a recursive relation for bottom stress involving only values at the previous time step and a pair of precomputed coefficients at each grid point.  相似文献   

7.
The CABARET scheme is used for the numerical solution of the one-dimensional shallow water equations over a rough bottom. The scheme involves conservative and flux variables, whose values at a new time level are calculated by applying the characteristic properties of the shallow water equations. The scheme is verified using a series of test and model problems.  相似文献   

8.
Nina Shokina 《PAMM》2010,10(1):653-654
The numerical modelling of surface water waves generated by a moving underwater landslide on irregular bottom is considered. The non-linear shallow water model is used with taking into account bottom mobility. The equations are obtained for an underwater landslide movement under the action of gravity force, buoyancy force, friction force and water resistance force. The predictor-corrector scheme [5], preserving the monotonicity of the numerical solution profiles in a linear case, is used on adaptive grids. The scheme is validated on the problem with a known analytical solution. The analysis is done for the dependencies of wave regimes on bottom slope, initial landslide depth, its length and width. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
V. S. Titov 《Acta Appl Math》1989,15(1-2):137-147
The local symmetries and conservation laws are calculated for the equations of shallow water with an axisymmetric profile of bottom under the assumption that the corresponding generating functions may depend only on all variables and their derivatives up to the second order. It is shown that if the bottom has the form of a paraboloid of revolution, then there are many symmetries and conservation laws generalizing those for the case of plane bottom.  相似文献   

10.
This is a study of the Euler equations for free surface water waves in the case of varying bathymetry, considering the problem in the shallow water scaling regime. In the case of rapidly varying periodic bottom boundaries this is a problem of homogenization theory. In this setting we derive a new model system of equations, consisting of the classical shallow water equations coupled with nonlocal evolution equations for a periodic corrector term. We also exhibit a new resonance phenomenon between surface waves and a periodic bottom. This resonance, which gives rise to secular growth of surface wave patterns, can be viewed as a nonlinear generalization of the classical Bragg resonance. We justify the derivation of our model with a rigorous mathematical analysis of the scaling limit and the resulting error terms. The principal issue is that the shallow water limit and the homogenization process must be performed simultaneously. Our model equations and the error analysis are valid for both the two- and the three-dimensional physical problems.  相似文献   

11.
We classify zeroth-order conservation laws of systems from the class of two-dimensional shallow water equations with variable bottom topography using an optimized version of the method of furcate splitting. The classification is carried out up to equivalence generated by the equivalence group of this class. We find additional point equivalences between some of the listed cases of extensions of the space of zeroth-order conservation laws, which are inequivalent up to transformations from the equivalence group. Hamiltonian structures of systems of shallow water equations are used for relating the classification of zeroth-order conservation laws of these systems to the classification of their Lie symmetries. We also construct generating sets of such conservation laws under action of Lie symmetries.  相似文献   

12.
The front-tracking method for hyperbolic conservation laws is combined with operator splitting to study the shallow water equations. Furthermore, the method includes adaptive grid refinement in multidimensions and shock tracking in one dimension. The front-tracking method is unconditionally stable, but for practical computations feasible CFL numbers are moderately above unity (typically between 1 and 5). The method resolves shocks sharply and is highly efficient. The numerical technique is applied to four test cases, the first being an expanding bore with rotational symmetry. The second problem addresses the question of describing the time development of two constant water levels separated by a dam that breaks instantaneously. The third problem compares the front-tracking method with an explicit analytic solution of water waves rotating over a parabolic bottom profile. Finally, we study flow over an obstacle in one dimension.  相似文献   

13.
We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H ?1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.  相似文献   

14.
A space–time discontinuous Galerkin (DG) finite element method is presented for the shallow water equations over varying bottom topography. The method results in nonlinear equations per element, which are solved locally by establishing the element communication with a numerical HLLC flux. To deal with spurious oscillations around discontinuities, we employ a dissipation operator only around discontinuities using Krivodonova's discontinuity detector. The numerical scheme is verified by comparing numerical and exact solutions, and validated against a laboratory experiment involving flow through a contraction. We conclude that the method is second order accurate in both space and time for linear polynomials.  相似文献   

15.
This paper is devoted to solve the system of partial differential equations governing the flow of two superposed immiscible layers of shallow water flows. The system contains source terms due to bottom topography, wind stresses, and nonconservative products describing momentum exchange between the layers. The presence of these terms in the flow model forms a nonconservative system which is only conditionally hyperbolic. In addition, two-layer shallow water flows are often accompanied with moving discontinuities and shocks. Developing stable numerical methods for this class of problems presents a challenge in the field of computational hydraulics. To overcome these difficulties, a new composite scheme is proposed. The scheme consists of a time-splitting operator where in the first step the homogeneous system of the governing equations is solved using an approximate Riemann solver. In the second step a finite volume method is used to update the solution. To remove the non-physical oscillations in the vicinity of shocks a nonlinear filter is applied. The method is well-balanced, non-oscillatory and it is suitable for both low and high values of the density ratio between the two layers. Several standard test examples for two-layer shallow water flows are used to verify high accuracy and good resolution properties for smooth and discontinuous solutions.  相似文献   

16.
In this paper, the Kinetic Flux Vector Splitting (KFVS) scheme is extended to solving the shallow water equations with source terms. To develop a well-balanced scheme between the source term and the flow convection, the source term effect is accounted in the flux evaluation across cell interfaces. This leads to a modified gas-kinetic scheme with particular application to the shallow water equations with bottom topography. Numerical experiments show better resolution of the unsteady solution than conventional finite difference method and KFVS method with little additional cost. Moreover, some positivity properties of the gas-kinetic scheme is established.  相似文献   

17.
We propose a new well-balanced central finite volume scheme for the Ripa system both in one and two space dimensions. The Ripa system is a nonhomogeneous hyperbolic system with a non-zero source term that is obtained from the shallow water equations system by incorporating horizontal temperature gradients. The proposed numerical scheme is a second-order accurate finite volume method that evolves a non-oscillatory numerical solution on a single grid, avoids the process of solving Riemann problems arising at the cell interfaces, and follows a well-balanced discretization that ensures the steady state requirement by discretizing the geometrical source term according to the discretization of the flux terms. Furthermore the proposed scheme mimics the surface gradient method and discretizes the water height according to the discretization of the water level. The proposed scheme is then applied and classical one and two-dimensional Ripa problems with flat or variable bottom topographies are successfully solved. The obtained numerical results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential and efficiency of the proposed method.  相似文献   

18.
Finite-volume central-upwind schemes for shallow water equations were proposed in [A. Kurganov and G. Petrova, Commun. Math. Sci., 5 (2007), 133–160]. These schemes are capable of maintaining “lake-at-rest” steady states and preserving the positivity of the computed water depth. The well-balanced and positivity preserving features of the central-upwind schemes are achieved, in particular, by using continuous piecewise linear interpolation of the bottom topography function. However, when the bottom function is discontinuous or a model with a moving bottom topography is studied, the continuous piecewise linear approximationmay not be sufficiently accurate and robust.  相似文献   

19.
In the framework of the linearized shallow water equations, the homogenization method for wave type equations with rapidly oscillating coefficients that generally cannot be represented as periodic functions of the fast variables is applied to the Cauchy problem for the wave equation describing the evolution of the free surface elevation for long waves propagating in a basin over an uneven bottom. Under certain conditions on the function describing the basin depth, we prove that the solution of the homogenized equation asymptotically approximates the solution of the original equation. Model homogenized wave equations are constructed for several examples of one-dimensional sections of the real ocean bottom profile, and their numerical and asymptotic solutions are compared with numerical solutions of the original equations.  相似文献   

20.
进一步研究由水动力学方程、泥沙输运方程和河床变化方程组成的浅水方程混合有限元法,给出时间沿特征方向离散的一种全离散格式,并证明全离散的水流速度、床底高度、水体厚度、水中泥沙含量的混合有限元解的存在性和收敛性(误差估计).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号