首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, utilizing the two dimensional equations of an incompressible inviscid fluid and the reductive perturbation method we studied the propagation of weakly nonlinear waves in water of variable depth. For the case of slowly varying depth, the evolution equation is obtained as the variable coefficient Korteweg-de Vries (KdV) equation. Due to the difficulties for the analytical solutions, a numerical technics so called “the method of integrating factor” is used and the evolution equation is solved under a given initial condition and the bottom topography. It is observed the parameters of bottom topography causes to the changes in wave amplitude, wave profile and the wave speed.  相似文献   

2.
广义缓坡方程   总被引:1,自引:0,他引:1  
运用表面波Hamilton方法和缓坡逼近假定,分析缓变三维流场和非平整海底对波浪传播的影响,推导出广义缓坡方程。海底地形由两个分量组成:慢变分量,其水平长度尺度大于表面波的波长;快变分量,其振幅与表面波的波长相比为一小量,但是其频率与表面波频率相当。该广义缓坡方程具有广泛的适用范围,以下著名的缓坡方程成为它的特例:经典的Berkhoff缓坡方程;包含环境流效应的Kirby缓坡方程;描述波状海底特征的Dingemans缓坡方程。另外,同时也得到了描述环境流场和快变海底效应的广义浅水方程。  相似文献   

3.
Considered herein is the Ostrovsky equation which is widely used to describe the effect of rotation on the surface and internal solitary waves in shallow water or the capillary waves in a plasma. It is shown that the solitary-wave solutions are orbitally stable for certain wave speeds.

  相似文献   


4.
In the framework of the linearized shallow water equations, the homogenization method for wave type equations with rapidly oscillating coefficients that generally cannot be represented as periodic functions of the fast variables is applied to the Cauchy problem for the wave equation describing the evolution of the free surface elevation for long waves propagating in a basin over an uneven bottom. Under certain conditions on the function describing the basin depth, we prove that the solution of the homogenized equation asymptotically approximates the solution of the original equation. Model homogenized wave equations are constructed for several examples of one-dimensional sections of the real ocean bottom profile, and their numerical and asymptotic solutions are compared with numerical solutions of the original equations.  相似文献   

5.
We study travelling wave solutions of a Korteweg–de Vries–Burgers equation with a non-local diffusion term. This model equation arises in the analysis of a shallow water flow by performing formal asymptotic expansions associated to the triple-deck regularisation (which is an extension of classical boundary layer theory). The resulting non-local operator is a fractional derivative of order between 1 and 2. Travelling wave solutions are typically analysed in relation to shock formation in the full shallow water problem. We show rigorously the existence of these waves. In absence of the dispersive term, the existence of travelling waves and their monotonicity was established previously by two of the authors. In contrast, travelling waves of the non-local KdV–Burgers equation are not in general monotone, as is the case for the corresponding classical KdV–Burgers equation. This requires a more complicated existence proof compared to the previous work. Moreover, the travelling wave problem for the classical KdV–Burgers equation is usually analysed via a phase-plane analysis, which is not applicable here due to the presence of the non-local diffusion operator. Instead, we apply fractional calculus results available in the literature and a Lyapunov functional. In addition we discuss the monotonicity of the waves in terms of a control parameter and prove their dynamic stability in case they are monotone.  相似文献   

6.
We investigate two interesting (1+1)-dimensional nonlinear partial differential evolution equations (NLPDEEs), namely the nonlinear dispersion equation with compact structures and the generalized Camassa–Holm (CH) equation describing the propagation of unidirectional shallow water waves on a flat bottom, and arising in the study of a certain non-Newtonian fluid. Using an interesting technique known as the sine-cosine method for investigating travelling wave solutions to NLPDEEs, we construct many new families of wave solutions to the previous NLPDEEs, amongst which the periodic waves, enriching the wide class of solutions to the above equations.  相似文献   

7.
In this paper, a coupled nonlinear Schrödinger (CNLS) equation, which can describe evolution of localized waves in a two‐mode nonlinear fiber, is under investigation. By using the Darboux‐dressing transformation, the new localized wave solutions of the equation are well constructed with a detailed derivation. These solutions reveal rogue waves on a soliton background. Moreover, the main characteristics of the solutions are discussed with some graphics. Our results would be of much importance in predicting and enriching rogue wave phenomena in nonlinear wave fields.  相似文献   

8.
We study the evolution of small-amplitude water waves when the fluid motion is three dimensional. An isotropic pseudodifferential equation that governs the evolution of the free surface of a fluid with arbitrary, uniform depth is derived. It is shown to reduce to the Benney-Luke equation, the Korteweg-de Vries (KdV) equation, the Kadomtsev-Petviashvili (KP) equation, and to the nonlinear shallow water theory in the appropriate limits. We compute, numerically, doubly periodic solutions to this equation. In the weakly two-dimensional long wave limit, the computed patterns and nonlinear dispersion relations agree well with those of the doubly periodic theta function solutions to the KP equation. These solutions correspond to traveling hexagonal wave patterns, and they have been compared with experimental measurements by Hammack, Scheffner, and Segur. In the fully two-dimensional long wave case, the solutions deviate considerably from those of KP, indicating the limitation of that equation. In the finite depth case, both resonant and nonresonant traveling wave patterns are obtained.  相似文献   

9.
The key purpose of the present work is to constitute a numerical scheme based on q‐homotopy analysis transform method to examine the fractional model of regularized long‐wave equation. The regularized long‐wave equation explains the shallow water waves and ion acoustic waves in plasma. The proposed technique is a mixture of q‐homotopy analysis method, Laplace transform, and homotopy polynomials. The convergence analysis of the suggested scheme is verified. The scheme provides and n‐curves, which show that the range convergence of series solution is not a local point effects and elucidate that it is superior to homotopy analysis method and other analytical approaches. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Periodic traveling waves are numerically computed in a constant vorticity flow subject to the force of gravity. The Stokes wave problem is formulated via a conformal mapping as a nonlinear pseudodifferential equation, involving a periodic Hilbert transform for a strip, and solved by the Newton‐GMRES method. For strong positive vorticity, in the finite or infinite depth, overhanging profiles are found as the amplitude increases and tend to a touching wave, whose surface contacts itself at the trough line, enclosing an air bubble; numerical solutions become unphysical as the amplitude increases further and make a gap in the wave speed versus amplitude plane; another touching wave takes over and physical solutions follow along the fold in the wave speed versus amplitude plane until they ultimately tend to an extreme wave, which exhibits a corner at the crest. Touching waves connected to zero amplitude are found to approach the limiting Crapper wave as the strength of positive vorticity increases unboundedly, while touching waves connected to the extreme waves approach the rigid body rotation of a fluid disk.  相似文献   

11.
A new class of resonant dispersive shock waves was recently identified as solutions of the Kawahara equation— a Korteweg–de Vries (KdV) type nonlinear wave equation with third‐ and fifth‐order spatial derivatives— in the regime of nonconvex, linear dispersion. Linear resonance resulting from the third‐ and fifth‐order terms in the Kawahara equation was identified as the key ingredient for nonclassical dispersive shock wave solutions. Here, nonlinear wave (Whitham) modulation theory is used to construct approximate nonclassical traveling dispersive shock wave (TDSW) solutions of the fifth‐ order KdV equation without the third derivative term, hence without any linear resonance. A self‐similar, simple wave modulation solution of the fifth order, weakly nonlinear KdV–Whitham equations is obtained that matches a constant to a heteroclinic traveling wave via a partial dispersive shock wave so that the TDSW is interpreted as a nonlinear resonance. The modulation solution is compared with full numerical solutions, exhibiting excellent agreement. The TDSW is shown to be modulationally stable in the presence of sufficiently small third‐order dispersion. The Kawahara–Whitham modulation equations transition from hyperbolic to elliptic type for sufficiently large third‐order dispersion, which provides a possible route for the TDSW to exhibit modulational instability.  相似文献   

12.
The interaction of water waves with circular plate within the framework of a linear theory is considered. The plate lies on the free surface in water of finite depth. The integral transform technique is used to solve this problem. The problem is reduced to a system of dual integral equations for a spectral function. The way to solve these equations consists in converting them into Fredholm integral equation of the second kind. The asymptotic solutions of this equation are obtained. Representations for diffraction field and for the forces on the plate are given.  相似文献   

13.
We study nonlinear free‐surface rotational waves generated through the interaction of a vertically sheared current with a topography. Equivalently, the waves may be generated by a pressure distribution along the free surface. A forced Korteweg–de Vries equation (fKdV) is deduced incorporating these features. The weakly nonlinear, weakly dispersive reduced model is valid for small amplitude topographies. To study the effect of gradually increasing the topography amplitude, the free surface Euler equations are formulated in the presence of a variable depth and a sheared current of constant vorticity. Under constant vorticity, the harmonic velocity component is formulated in a simplified canonical domain, through the use of a conformal mapping which flattens both the free surface as well as the bottom topography. Critical, supercritical, and subcritical Froude number regimes are considered, while the bottom amplitude is gradually increased in both the irrotational and rotational wave regimes. Solutions to the fKdV model are compared to those from the Euler equations. We show that for rotational waves the critical Froude number is shifted away from 1. New stationary solutions are found and their stability tested numerically.  相似文献   

14.
The interaction of flexural‐gravity waves with a thin circular‐arc‐shaped permeable plate submerged beneath the ice‐covered surface of water with uniform finite depth is considered under the assumption of linear theory. The problem is reduced to a second kind hypersingular integral equation for the potential difference across the plate which is solved approximately by an expansion–collocation method. Utilizing the solution, the reflection and the transmission coefficients and the hydrodynamic forces are evaluated numerically. The focus of the paper is to illustrate the effect of a porous curved plate submerged in finite depth water with an ice‐cover on the normally incident waves. Numerical results for a circular‐arc‐shaped plate for different configurations are derived and represented graphically. Also, by choosing an appropriate set of parameters, the known results for a circular‐arc‐shaped rigid plate submerged in deep water and a semicircular porous plate submerged in finite depth water with a free surface are recovered as special cases.  相似文献   

15.
In this paper, we devise a simple way to explicitly construct the Riemann theta function periodic wave solution of the nonlinear partial differential equation. The resulting theory is applied to the Hirota–Satsuma shallow water wave equation. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function. We obtain the one‐periodic and two‐periodic wave solutions of the equation. The relations between the periodic wave solutions and soliton solutions are rigorously established. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
We study periodic capillary and capillary-gravity waves traveling over a water layer of constant vorticity and finite depth. Inverting the curvature operator, we formulate the mathematical model as an operator equation for a compact perturbation of the identity. By means of global bifurcation theory, we then construct global continua consisting of solutions of the water wave problem which may feature stagnation points. A characterization of these continua is also included.  相似文献   

17.
We consider the Isobe-Kakinuma model for two-dimensional water waves in the case of a flat bottom. The Isobe-Kakinuma model is a system of Euler-Lagrange equations for a Lagrangian approximating Luke's Lagrangian for water waves. We show theoretically the existence of a family of small amplitude solitary wave solutions to the Isobe-Kakinuma model in the long wave regime. Numerical analysis for large amplitude solitary wave solutions is also provided and suggests the existence of a solitary wave of extreme form with a sharp crest.  相似文献   

18.
Rossby Waves     
An asymptotic solution of the linear shallow water equations for small Rossby number is constructed to describe Ross by waves. It leads to a dispersion or eiconal equation for the phase of the waves and a transport equation for their amplitude. It is shown how these equations can be solved by means of rays for both planetary and topographic Rossby waves. The method is illustrated by constructing the wave field produced by a time harmonic point source in fluid of uniform depth. This solution is a Green's function for the equations.  相似文献   

19.
Rossby Solitary Waves in the Presence of a Critical Layer   总被引:1,自引:1,他引:0  
This study considers the evolution of weakly nonlinear long Rossby waves in a horizontally sheared zonal current. We consider a stable flow so that the nonlinear time scale is long. These assumptions enable the flow to organize itself into a large‐scale coherent structure in the régime where a competition sets in between weak nonlinearity and weak dispersion. This balance is often described by a Korteweg‐de‐Vries equation. The traditional assumption of a weak amplitude breaks down when the wave speed equals the mean flow velocity at a certain latitude, due to the appearance of a singularity in the leading‐order equation, which strongly modifies the flow in a critical layer. Here, nonlinear effects are invoked to resolve this singularity, because the relevant geophysical flows have high Reynolds numbers. Viscosity is introduced in order to render the nonlinear‐critical‐layer solution unique, but the inviscid limit is eventually taken. By the method of matched asymptotic expansions, this inner flow is matched at the edges of the critical layer with the outer flow. We will show that the critical‐layer–induced flow leads to a strong rearrangement of the related streamlines and consequently of the potential‐vorticity contours, particularly in the neighborhood of the separatrices between the open and closed streamlines. The symmetry of the critical layer vis‐à‐vis the critical level is also broken. This theory is relevant for the phenomenon of Rossby wave breaking and eventual saturation into a nonlinear wave. Spatially localized solutions are described by a Korteweg‐de‐Vries equation, modified by new nonlinear terms; depending on the critical‐layer shape, this leads to depression or elevation waves. The additional terms are made necessary at a certain order of the asymptotic expansion while matching the inner flow on the dividing streamlines. The new evolution equation supports a family of solitary waves. In this paper we describe in detail the case of a depression wave, and postpone for further discussion the more complex case of an elevation wave.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号