首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
率相关非比例循环塑性内时本构模型   总被引:3,自引:0,他引:3  
将材料响应的总应力表示为平衡态应力和非平衡成过应力的和,分别定义描述率无关和率相关变形过程的内时,在平衡态响应的描写中,假定反映非比例加载效应的附加等等向强化和异向强化函数与沿应力迹法向的塑性应变分量的累积量相关,并在其中考虑加载路径几何性质变化的影响,建立一组率相关非比例循环塑性内时本构方程,对XCrNi18.9不锈钢在不同加载率下的单轴比例和多轴非比例响应进行预测,与Haupt和Lion的实验  相似文献   

2.
考虑路径相关性的非比例循环塑性本构模型   总被引:2,自引:0,他引:2  
匡震邦  赵社戌 《力学学报》1999,31(4):484-492
根据非比例加载下金属材料响应的延迟特性及加载路径相关性,选取沿应力迹法向的塑性应变的累积量作为非比例加载影响的度量,相应给出反映非比例附加强化的变量,并假设其模量和强化率与加载路径的几何参数相关.为反映由于非比例加载而引起的材料强化的异向效应,在Valanis的塑性内时响应方程中引入与加载路径几何性质有关的应力项,构成非比例循环塑性本构关系.对316和304不锈钢材料在一些典型非比例循环加载路径下的应力响应进行了理论预测,与Benallal等及McDowell的实验结果取得了良好的一致.  相似文献   

3.
A series of uniaxial and biaxial cyclic tests with proportional or nonproportional loading path and with different strain-rate histories are conducted on thin-walled circular cylindrical specimens of type 304 stainless steel. The results of these tests show that once a material is stabilized under a lower strain rate, the stress-strain response is not appreciably affected by a jump to a higher strain rate. A rate-dependent constitutive model recently proposed by and [1991] has been extended to predict the above-mentioned strain-rate history effect. A comparison between the predictions of the extended model and the test results shows that most of the rate-dependent features of the material can be simulated by the model.  相似文献   

4.
Cyclic deformation under proportional and nonproportional loading of a textured copper was experimentally studied, and the results were compared with those of texture-free copper with the same grain size. The texture had a great influence on the equivalent cyclic stress–strain (CSS) curves under proportional loading but insignificant influence on the CSS curves under nonproportional loading. By comparing the slip patterns on the specimen surface and dislocation substructures under proportional and nonproportional loading, the mechanism of nonproportional hardening was discussed. The slip multiplicity inherited from originally multiple-slip oriented grains plays a minor role. Nonproportional hardening is the result of enhanced activated slip systems and more uniform activation of slip systems due to the rotation of maximum shear stress under nonproportional loading. At high strain amplitudes, cells were the primary substructures for both proportional and nonproportional loading but the diameters of the cells under nonproportional loading were smaller for similar strain magnitude. A linear relationship existed between the saturation equivalent stress magnitude and the reciprocal of the diameter of the dislocation cells. Such a relationship was independent of the loading modes and texture. The saturation stress magnitude was related to the bowing stress of screw dislocations in the interior area of dislocation cells. The mechanical response was practically recoverable either when the loading magnitude was changed from a higher value to a lower value or when the loading was changed from a nonproportional loading path to a proportional loading path. However, the dislocation substructures cannot be completely recovered.  相似文献   

5.
Relaxation experiments for metallic materials and solid polymers have exhibited nonlinear dependence of stress relaxation on prior loading rate; the relaxed stress associated with the fastest prior strain rate has the smallest magnitude at the end of the same relaxation periods. Modeling capability for the basic feature of relaxation behavior is qualitatively investigated in the context of unified state variable theory. Unified constitutive models are categorized into three general classes according to the rate dependence of kinematic hardening rule, which defines the evolution of the back (equilibrium) stress and is the major difference among constitutive models. The first class of models adopts the nonlinear kinematic hardening rule proposed by Armstrong and Frederick. In this class, the back stress appears to be rate-independent under loading and subsequent relaxation conditions. In the second class of models, a stress rate term is incorporated into the Armstrong–Frederick rule and the back stress then becomes rate-dependent during relaxation condition even though it remains rate-independent under loading condition. The final class proposed here includes a new nonlinear kinematic hardening rule that causes the back stress to be rate-dependent all the time. It is shown that the apparent rate dependence of the back stress during relaxation enables constitutive models to predict the influence of prior loading rate on relaxation behavior.  相似文献   

6.
The elastic-plastic behaviour of a solid circular bar made of a homogeneous, isotropic and nonhardening material but of a rate-dependent type, subjected to different proportional deformation programmes of twist and stretch, is analysed. In this investigation the material is assumed to yield according to the von Mises criterion and then to follow a rate-dependent post-yield constitutive law of the Perzyna type. Four radial paths in the angte-of-twist and axial-stretch plane were investigated. For each deformation path the numerical solution of the governing system of quasi-linear partial differential equations gave the corresponding loading path and the radial variation of the stress field at selected times. This study complements that of S. A. Meguid and J.D. Campbell (1979) which considered mainly nonproportional deformation paths. In this work residual stress profiles were also calculated, based upon instantaneous unloading after various amounts of deformation. Comparison with predictions of a rateindependent theory for a limiting state, where elastic strains are negligible, is made. Over a considerable range, the loading paths beyond the initial yield were nearly straight, at the elastic slope. The load trajectory then bends over and approaches a point on the limit-state locus. The results showed that the approximate procedure of increasing the flow stress by an empirically determined factor corresponding to a mean plastic strain-rate gave a good estimate for the limit-state stresses.  相似文献   

7.
An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.  相似文献   

8.
Constitutive equations for class of materials that possess granular microstructure can be effectively derived using granular micromechanics approach. The stress–strain behavior of such materials depends upon the underlying grain scale mechanisms that are modeled by using appropriate rate-dependent inter-granular force–displacement relationships. These force–displacement functions are nonlinear and implicit evolutions equations. The numerical solution of such equation under applied overall stress or strain loading can entail significant computational expense. To address the computations issue, an efficient explicit time-integration scheme has been derived. The developed model is then utilized to predict primary, secondary and tertiary creep as well as rate-dependent response under tensile and compressive loads for hot mix asphalt. Further, the capability of the derived model to describe multi-axial behavior is demonstrated through generations of biaxial time-to-creep failure envelopes and rate-dependent failure envelopes under monotonic biaxial and triaxial loading. The advantage of the approach presented here is that we can predict the multi-axial effects without resorting to complex phenomenological modeling.  相似文献   

9.
Cyclic ratchetting behavior of 1070 steel is studied under proportional and nonproportional loading with specific emphasis on the ratchetting rate decay mechanisms for large numbers of loading cycles. Under proportional loading, where the principal stress directions are unchanged, the ratchetting evolves in the mean stress direction. Under nonproportional loading, however, the ratchetting direction is determined by the loading path and can be different from the mean stress direction. The ratchetting rate decreases with increasing loading cycles, displaying a power law relationship with the number of loading cycles. The experimental ratchetting results indicate that under cyclic loading the material exhibits a tendency toward complying with a linear hardening rule with concomitant hysteresis loop closure. Based on the fundamental framework of plasticity theory and detailed evaluation of the stress-strain behaviors, the ratchetting can be classified into two basic types; Type I, which is identifiable with proportional loading where the ratchetting is due to the different values of the plastic modulus function at the symmetric loading points with respect to the mean stress state, and Type II, which represents nonproportional loading where the ratchetting is driven by the noncoincidence of the plastic strain rate vector and the translation direction of the yield surface (backstress rate vector). The Armstrong-Frederick-based plasticity models modified by Chaboche et al. and Bower are ill-suited for describing the experimental results of both types of ratchetting. The Ohno-Wang model, which introduces a threshold concept, can account for the ratchetting rate decay of Type II ratchetting, providing results that agree with experimental observations. Modification may be needed for the Ohno-Wang model so that the model can better describe Type I ratchetting.  相似文献   

10.
以拉扭簿壁管试件为研究对象,根据多轴临界面上的应力应变特性及多轴疲劳临界面法的结果,结合单轴循环应力应变关系,研究了多轴比例与非比例加载下的循环应力应变关系,推导出多应力应变关系模型,经拉扭复合比例与非比例物载试验难证,其预测结果与实测值相符合。  相似文献   

11.
非等温条件下非比例循环粘塑性本构描述   总被引:1,自引:0,他引:1  
杨显杰  高庆  孙训方 《力学学报》1996,28(2):251-256
为了描述在非等温非比例循环加载下的循环变形行为,本文提出了一个考虑材料非比例循环附加硬化效应、非比例循环加载历史效应和温度历史效应的粘塑性本构模型.在该模型中,引入了具有三种不同演化速率的背应力演化方程;定义了新的非比例度;为了反映非比例循环历史和温度历史的影响,引入了表现各向同性变形阻力Qasm,并对各向同性的表现变形阻力引入了具有先前加载历史记忆的演化方程.将本文模型用于1Cr18Ni9Ti不锈钢高温循环变形行为描述,其预言结果与实验结果吻合得很好.  相似文献   

12.
In this article, we focus our attention on the relation between instrumented indentation tests and the prediction by means of finite element calculations. To this end, a finite strain viscoplasticity model of Perzyna-type with non-linear isotropic and kinematic hardening is calibrated at experimental data of steel S690QL. A particular concept for conducting uniaxial tensile and compression tests is taken up in order to represent the basic rate-dependent material behavior. In this respect, an algorithmic framework of material parameter identification using finite elements is proposed leading to a two-stage procedure in the case of the underlying rate-dependent constitutive model. On the basis of the termination points of relaxation the rate-independent equilibrium stress state can be identified and all viscous parts of the model are obtained using rate-dependent loading paths. Finally, use is made of finite elements for predicting indentation experiments, which results in a critical view on modeling and parameter identification on the basis of experimental results occurring in instrumented indentation tests.  相似文献   

13.
A set of constitutive equations for large rate-dependent elastic-plastic-damage materials at elevated temperatures is presented to be able to analyze adiabatic high strain rate deformation processes for a wide range of stress triaxialities. The model is based on the concepts of continuum damage mechanics. Since the material macroscopic thermo-mechanical response under large strain and high strain rate deformation loading is governed by different physical mechanisms, a multi-dissipative approach is proposed. It incorporates thermo-mechanical coupling effects as well as internal dissipative mechanisms through rate-dependent constitutive relations with a set of internal variables. In addition, the effect of stress triaxiality on the onset and evolution of plastic flow, damage and failure is discussed.Furthermore, the algorithm for numerical integration of the coupled constitutive rate equations is presented. It relies on operator split methodology resulting in an inelastic predictor-elastic corrector technique. The explicit finite element program LS-DYNA augmented by an user-defined material subroutine is used to approximate boundary-value problems under dynamic loading conditions. Numerical simulations of dynamic experiments with different specimens are performed and good correlation of numerical results and published experimental data is achieved. Based on numerical studies modified specimens geometries are proposed to be able to detect complex damage and failure mechanisms in Hopkinson-Bar experiments.  相似文献   

14.
Cyclic plasticity experiments were conducted on a pure polycrystalline copper and the material was found to display significant cyclic hardening and nonproportional hardening. An effort was made to describe the cyclic plasticity behavior of the material. The model is based on the framework using a yield surface together with the Armstrong–Frederick type kinematic hardening rule. No isotropic hardening is considered and the yield stress is assumed to be a constant. The backstress is decomposed into additive parts with each part following the Armstrong–Frederick type hardening rule. A memory surface in the plastic strain space is used to account for the strain range effect. The Tanaka fourth order tensor is used to characterize nonproportional loading. A set of material parameters in the hardening rules are related to the strain memory surface size and they are used to capture the strain range effect and the dependence of cyclic hardening and nonproportional hardening on the loading magnitude. The constitutive model can describe well the transient behavior during cyclic hardening and nonproportional hardening of the polycrystalline copper. Modeling of long-term ratcheting deformation is a difficult task and further investigations are required.  相似文献   

15.
16.
一个非比例循环粘塑性本构模型   总被引:4,自引:1,他引:4  
本文提出地一个考虑材料非比例循环附加强效应,非比例循环加载历史产应和应变幅值历史效应的粘塑性体构模型。在该模型中,引入了对加载过程非常弹性应变幅值的记忆变量q;定义了新的非比例度;引入了考虑材料非比例度的循环饱和各向同性变形阻力参量Qs;对各向同性变开引入了具有先前加载历史记忆的演化方程,将本文模型用于1Cr18Ni9Ti不锈钢高温循环变形行为描述,其预言结果与实验结果吻合得很好,表明该模型能很好  相似文献   

17.
花岗岩体中应力波传播计算的动态本构关系   总被引:1,自引:0,他引:1  
在花岗岩体的弹性区域,对实测径向质点速度波形运用Lagrangian分析方法,得到了球面应力波传播的加载速率相关的应力应变关系曲线。由速率相关本构关系所作的计算结果表明,它能较正确地描述岩石中球面应力波传播过程中所体现的主要特征,即应力波峰值衰减指数大于1和波形剖面的展宽。  相似文献   

18.
循环软化45碳钢和循环硬化304不锈钢的棘轮行为实验研究   总被引:1,自引:1,他引:0  
对循环软化45碳钢的单轴应力循环下的平均应力、应力幅值以及先前应变循环对棘轮效应的影响进行了实验研究;并对循环硬化的304不锈钢进行了多种非比例循环加载路径下路径形状、路径等效应力幅值、平均应变与平均应力对材料棘轮变形行为的影响实验.发现平均应力和应力幅值及其历史对于材料的棘轮行为都有很大的影响.  相似文献   

19.
The results of companion, incremental/decremental, and stepup fatigue experiments on austenitic stainless steel tube (type 304) are presented. The experiments include proportional and nonproportional loading conditions at ambient as well as elevated temperatures. Empirical relations are developed between von Mises effective stress and strain, and these relations are shown to describe the cyclic behavior during proportional companion as well as incremental/decremental tests. In case of nonproportional incremental/decremental experiments, the material behavior is not accurately modeled either by using the von Mises effective stress and strain, or by relating Tresca's maximum shear stress and strain.  相似文献   

20.
Ramp wave experiments on the Sandia Z accelerator provide a new approach to study the rapid compression response of materials at pressures, temperatures and stress or strain rates not attainable in conventional shock experiments. Due to its shockless nature, the ramp wave experiment is often termed as an isentropic (or quasi-isentropic) compression experiment (ICE). However, in reality there is always some entropy produced when materials are subjected to large amplitude compression even under shockless loading. The entropy production mechanisms that cause deformation to deviate from the isentropic process can be attributed to mechanical and thermal dissipations. The former is due to inelasticity associated with various deformation mechanisms and the rate effect that is inherent in all the deformation processes and the latter is due to irreversible heat conduction. The main purpose of the current study is to gain insights into the effects of ramp and shock loading on the entropy production and thermomechanical responses of materials. Another purpose is to investigate the role of heat conduction in the material response to both the non-steady ramp wave and steady shock.Numerical simulations are used to address the aforementioned research objectives. The thermomechanical response associated with a steady shock wave is investigated first by solving a set of nonlinear ordinary differential equations. Using the steady wave solutions as the reference, the material responses under non-steady ramp waves are then studied with numerical wave propagation simulation. It is demonstrated that the material response to ramp and shock loading is essentially a manifestation of the interaction between the time scale associated with the loading and the intrinsic time scales associated with mechanical deformation and heat transfer. At lower loading rates as encountered in ramp loading, the loading path is closer to an isentrope and results in lower entropy production. The reasonable ramp rate to obtain a quasi-isentropic state depends on the intrinsic time scales of the dissipation mechanisms which are strongly material dependent. Thus shockless loading does not necessarily produce an isentropic response. Between two equilibrium states, heat conduction was shown to have significant effect on the temperature history but it contributes little to the overall temperature change if the specific heat remains constant. It also affects the history of entropy, but only the irreversible part of heat conduction contributes to the net entropy change. The various types of thermomechanical responses of materials would manifest themselves more significantly in terms of the thermal history than the mechanical history. Thus temperature measurement appears to be an important experimental tool in distinguishing the various mechanisms for the thermomechancial responses of the materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号