首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na_(0.44)MnO_2具有特殊的三维隧道结构和良好的化学稳定性,是一种理想的钠离子电池正极材料。本文研究了Na_(0.44)MnO_2正极材料的高温电化学性能,采用液相法对Na_(0.44)MnO_2正极材料进行Al_2O_3包覆改性,并通过电化学、形貌分析、结构分析、化学成分表征等方法研究Al_2O_3包覆的改性机制。结果表明:Al_2O_3包覆层有效地隔离了Na_(0.44)MnO_2与电解液的直接接触,缓解了高温下锰的溶解,从而维持了稳定的电极/溶液界面结构。Na_(0.44)MnO_2@Al_2O_3在55°C下的电化学性能相比未包覆Na_(0.44)MnO_2有显著提升:循环100次后容量保持率达79.2%,远高于未包覆的66.5%;在10C (1C=120 mAh·g~(-1))的大电流密度下放电比容量达到63.6 mAh·g~(-1),而未包覆的仅有12.3 mAh·g~(-1)。  相似文献   

2.
我们通过球磨法及后续的高温焙烧合成出了短棒状的Na0.44MnO2,并研究了其作为碱性水溶液钠离子电池正极时,电解液NaOH浓度对其电化学性能的影响。结果表明,提高NaOH浓度有利于抑制嵌氢反应的发生并改善电极的循环性能和倍率性能,但同时也会造成析氧反应的提前触发,浓度过高时则又会降低其倍率性能。Na0.44MnO2在8 mol·L?1 NaOH中表现出了最佳的电化学性能,0.5C(1C=121 mA·g?1)的电流密度下,比容量达到79.2 mAh·g?1,50C时,仍能释放出35.3 mAh·g?1的比容量,在0.2–1.2 V(vs.NHE)的电压窗口内,500周后容量保持率64.3%。此外,我们也发现缩小电压窗口可以减少副反应、改善循环性能。Na0.44MnO2在浓碱电解液中也表现出了优异的耐过充能力。上述结果不仅表明通过优化电解液体系和测试条件可大大改善Na0.44MnO2的储钠性能,同时也证实了Na0.44MnO2作为一种水溶液钠离子电池正极材料,在大规模储能领域具有良好的应用前景。  相似文献   

3.
Na_(0.44)MnO_2具有原料丰富、合成简单、无毒环境友好、结构稳定性高等优势,适合作为水溶液钠离子电池的正极材料。Na_(0.44)MnO_2在中性水溶液中的比容量较低(30–40m Ah·g~(-1)),而采用碱性电解液可大大提高Na_(0.44)MnO_2的可逆比容量(80 m Ah·g~(-1))。当我们扩宽碱性电池的充放电窗口(1.95–0.3V)时,在1.0V(vsZn/Zn~(2+))附近出现一个宽的放电平台,且首周放电比容量高达275 m Ah·g~(-1),远远超出其理论嵌钠容量(121 m Ah·g~(-1))。本文我们通过对不同放电深度下的电极进行X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)和电感耦合等离子体发射光谱(ICP-AES)表征,研究其超额容量的放电机理。结果表明1.0 V以下的低电位放电过程可分为两个阶段:第一阶段为H+在隧道结构中的嵌入,此时隧道结构保持不变,放电曲线上表现为平台区;第二阶段为过量H+的嵌入引起隧道结构破坏,同时伴随着Mn(OH)_2相的生成和Na+从结构中释放出来,放电曲线上表现为斜坡区。这一研究结果表明Na_(0.44)MnO_2在碱液中的可逆性与下限电位紧密相关,高稳定的Na_(0.44)MnO_2材料需要避免H+的嵌入。  相似文献   

4.
采用简单的水热合成法制备氟磷酸钒氧钠(Na_3V_2(PO_4)_2O_2F,简写为NVPOF),通过调节水热反应溶液的pH值和反应温度等关键参数,有效调节NVPOF的颗粒尺寸和均匀性,优化其电化学性能。研究结果显示,性能最优的NVPOF的合成条件是:pH值为7.00±0.05,水热反应温度为170℃。在该条件下合成的NVPOF正极材料具有优异的电化学性能,表现为0.1C(1C=130 mA·g~(-1))的倍率下放电比容量可达123.2 mAh·g~(-1),且在20C的高倍率下仍可实现85.9 mAh·g~(-1)的比容量,在1C下循环200圈后其容量保持率为96.2%,表明该材料具有高容量、优异的倍率和循环性能。所制备的NVPOF颗粒为纳米尺度且具有很高的均匀性,可缩短Na~+的传输路径从而缩短其传输时间,且NVPOF晶体结构具有高稳定性,是一类具有高性能的钠离子电池正极材料。  相似文献   

5.
以柠檬酸钠作为配位剂,采用共沉淀法,在室温下制备了铁基普鲁士蓝材料(FePB)。当使用20 L容积的反应釜,并将前驱体亚铁氰化钠(Na_4[Fe(CN)_6])的浓度提高至0.5 mol·L~(-1)时,制备一次可实现高达500 g的产量。电化学测试显示,所得FePB材料具有较高的容量、优异的倍率性能和良好的循环寿命。在0.1C时,该材料首次放电比容量可达到117 mAh·g~(-1),在10C的大电流密度下,比容量仍可保持在92 mAh·g~(-1)。在1C电流密度下,经过500次循环,比容量仍保持在87 mAh·g~(-1),容量保持率达到89%。以商业硬碳为负极,以FePB为正极,制作了软包钠离子全电池。该软包电池在50 mA的电流下,经过400次循环可实现75%的容量保持率。FePB材料优异的电化学性能与其较高的钠含量、低的缺陷、多边界的微观结构以及普鲁士蓝类材料独特的开放框架结构有关。  相似文献   

6.
采用水热法制备了Na_3V_2(PO_4)_2O_2F (NVPOF)钠离子电池正极材料,利用X射线衍射(XRD)、扫描电子显微镜(SEM)和恒流充放电(GCD)等方法研究了其形貌、结构与电化学性能。结果显示,纯相NVPOF形貌规则,呈长1~3μm、宽300 nm~1μm、长宽比为2~3的四棱柱形貌。NVPOF具有2对平稳的充放电平台,在0.2C和2C电流密度下,放电比容量达到124.2和70.5 m Ah·g~(-1),经100次循环后,放电比容量仍有105.8和59.6 m Ah·g~(-1),容量保持率达到85.2%和84.5%,库仑效率基本在97%以上,且低温(0℃)电化学性能也有不错的表现。经还原氧化石墨烯(r GO)包覆提高电子电导率,NVPOF@r GO在0.5C和2C的室温放电比容量高达124.4和88.4 m Ah·g~(-1),且2C倍率下循环200圈后的比容量仍有78.7 m Ah·g~(-1),容量保持率高达89%,库仑效率始终保持在99%左右,显示出优异的倍率和循环性能。  相似文献   

7.
采用硬模板法合成了具有六方排列的平行圆柱形有序孔道介孔α-氧化铁(α-Fe_2O_3),并将其用作锂离子、钠离子电池的负极材料。所制备的介孔α-Fe_2O_3凭借其独特的有序介孔结构,有效缓解电极在充放电过程中的体积效应,提高了电解液浸润性,促进锂/钠离子的转移和传输,从而在锂离子及钠离子电池中均表现出优异的电化学性能。作为锂离子电池负极时,其首圈放电比容量为983.9 mAh·g~(-1)。经过100次循环后,其放电比容量为1 188.0 mAh·g~(-1)。在钠离子电池中,其首圈放电比容量为687.7mAh·g~(-1)。经过50次循环后,仍有316.9 mAh·g~(-1)的放电比容量。  相似文献   

8.
通过共沉淀以及后续的气相硫化成功制备了横向边长约为2μm,纵向厚度约为30 nm的NiCo_2S_4六角片,并研究了其作为钠离子电池负极材料的电化学性能。电化学性能测试结果显示在1000 mA·g~(-1)的电流密度下,NiCo_2S_4电极循环60次后仍然可保持约387mAh·g~(-1)的可逆比容量。此外,NiCo_2S_4电极还具有良好的倍率性能,在200、400、800、1000和2000mA·g~(-1)的电流密度下,容量分别为542、398、347、300和217mAh·g~(-1)。通过进一步动力学机制分析发现,NiCo_2S_4电极的良好的倍率性能得益于其二维片层状结构诱导产生的赝电容。上述结果表明,NiCo_2S_4纳米六角片是一种极具潜力的钠离子电池负极材料。  相似文献   

9.
选用理论容量高达446 mAh·g~(-1)的杯[4]醌(calix[4]quinone,C4Q)作为正极材料,研究其储锂性能。由于C4Q在常规有机电解液中的溶解问题会在一定的程度上限制其性能最大化,我们选用Li[TFSI]/[PY13][TFSI]([PY13][TFSI]:1-丙基-1-甲基吡咯烷鎓双三氟甲基磺酰亚胺)离子液体电解液与C4Q进行匹配组装锂离子电池,较大程度地提升了其循环稳定性和倍率性能。在0.1C的电流密度下,循环100圈后的放电比容量为280 mAh·g~(-1),1 000圈后的容量保持率高达72%。当电流密度增加至1C时,放电容量仍有154 mAh·g~(-1)。  相似文献   

10.
水葫芦作为一种廉价的生物质资源,对其进行物理、化学处理后得到疏松多孔的碳材料。将该碳材料用于锂离子电池负极时,在1000 mA g~(-1)的电流密度下循环100次可逆容量保持在283 mAh g~(-1),即使在10 A g~(-1)的电流密度下,可逆容量仍高达125 mAh g~(-1),表现出较好的倍率性能。用作钠离子电池负极时,在100 mA g~(-1)的电流密度下可逆容量达到145 mAh g~(-1),在1000 mA g~(-1)下循环100次可逆容量依然可以保持在123 mAh g~(-1)。该电极材料优异的电化学性能可归因于其疏松多孔的结构,这有利于活性材料与电解液充分接触,同时为锂/钠离子存储提供更多的位点,并且有利于离子的快速传输。  相似文献   

11.
报道了Na_2Ti_3O_7纳米片的原位生长和钠离子电池负极材料的应用。通过简单的腐蚀市售的钛片制备出相互连接的微纳结构的Na_2Ti_3O_7纳米片。此外,腐蚀后的钦片在不用添加导电剂或粘结剂的情况下,可以直接作为电极材料使用。这种电极材料表现出优越的电化学性能,在50 mA·g~(-1)的电流密度下具有175mAh·g~(-1)的可逆容量,在2000mA·g~(-1)的电流密度下循环3000周后,其容量仍保持120 mAh·g~(-1),容量保持率为96.5%。Na_2Ti_3O_7纳米片电极的优越电化学性能归因于二维结构具有较短的离子/电子扩散路径以及无粘结剂结构能有效的增加电极的电子传导能力。结果表明,这种微纳结构能够有效地克服Na_2Ti_3O_7作为电极材料离子/电子导电性差的缺点。因此,这种无粘结剂结构的Na_2Ti_3O_7纳米片负极材料是一种很有潜力的钠离子负极材料。  相似文献   

12.
应用简单的高温固相烧结法合成了Ti掺杂改性的Li_2MnO_3材料。电子扫描显微镜、X射线衍射以及X射线光电子能谱分析表明Ti元素取代Mn离子掺入到Li_2MnO_3晶格中,且掺杂能有效地抑制一次颗粒的团聚。电化学阻抗和恒流充放电测试结果表明,在2.0~4.6 V的电压窗口下,掺杂改性的样品Li_2Mn_(0.97)Ti_(0.03)O_3的首圈放电比容量达到209 m Ah·g~(-1),库仑效率为99.5%,循环40圈后容量保持率为94%;当电流密度增大到400 m A·g~(-1)时,掺杂改性的样品仍然可以放出120 m Ah·g~(-1)比容量,远高于同等电流密度下未掺杂的Li_2MnO_3原粉的比容量(52 m Ah·g~(-1))。Ti掺杂可有效地改善Li_2MnO_3的循环稳定性和倍率性能,有利于促进该材料的商业化应用。  相似文献   

13.
钠具有资源丰富、成本低廉等优势,因此钠离子电池被认为是未来替代锂离子电池的最佳候选者之一。然而,寻找合适的电极材料是当前制备高性能钠离子电池面临的难题之一。在众多候选材料中,钒酸盐材料通过引入阳离子增加钒的配位数,使得材料结构的稳定性得到提高,从而改善了钠离子电池的电化学性能。本文研究了一种原位相分离法合成V_2O_5/Fe_2V_4O_(13)纳米复合材料。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)等对电极材料形貌、组成和结构进行了表征。实验结果显示,V_2O_5/Fe_2V_4O_(13)纳米复合材料相对于V2O5纳米线材料,结构更加稳定,在0.1 A·g~(-1)电流密度下,初始放电容量由295.4 m Ah·g~(-1)提升到342 m Ah·g~(-1),循环100圈容量保持率由26.6%提高到65.8%,获得了更加优异的倍率性能(在1.0 A·g~(-1)电流密度下,容量由44 m Ah·g~(-1)提高到160 m Ah·g~(-1))。因此,V_2O_5/Fe_2V_4O_(13)纳米复合材料的研究为开拓新型高性能钠离子电池负极材料拓宽了思路。  相似文献   

14.
可充电氢气电池作为一种新兴的电池体系在大规模能源储存领域显示出富有前景的电化学性能.锂嵌入型化合物作为一大类的锂离子电池正极材料能够很好地用作可充电氢气电池的正极.本文开发了2种新型锂嵌入型化合物-氢气电池.通过使用钴酸锂与磷酸铁锂2种正极材料分别与氢气负极在硫酸锂水系电解液中进行匹配,得到了钴酸锂-氢气电池与磷酸铁锂-氢气电池.钴酸锂-氢气电池展现出约1.27 V的放电电位,约97 mA·h·g~(-1)的比容量及10C的高倍率;磷酸铁锂-氢气电池展现出约0.66 V的放电电位,约125 mA·h·g~(-1)的比容量以及10C的高倍率.虽然,钴酸锂-氢气电池和磷酸铁锂-氢气电池因为使用了未经优化的、不稳定的锂嵌入型化合物正极材料而导致全电池容量衰减,但这2种电池经过氢气负极的再循环利用均表现出优异的恢复能力.本文结果证明了氢气电池的化学稳定性及其在未来长寿命电池中具有的大规模能源储存潜力.  相似文献   

15.
设计合成了一系列聚酰亚胺基的共轭骨架材料用于锂电池负极.首先,选用具有不同共轭体系的二酐分子用作共聚物构建单元,随后通过亚胺化反应与三聚氰胺共缩聚.最后,通过进一步热处理提高材料的交联程度和稳定性.将该材料用于锂离子电池负极表现出稳定的电化学性能.聚合物的倍率性能测试结果表明:在150 mA·g~(-1)的电流密度下,循环150次后,放电比容量达到471 mAh·g~(-1)以上,在2 A·g~(-1)的较大电流密度下,放电比容量达122.1 mAh·g~(-1),当电流密度返回至100 mA·g~(-1)时,其放电比容量又上升至532.3 mAh·g~(-1)左右,材料具有较好的倍率性能,聚合物材料在充放电过程中,避免了有机小分子材料在与锂离子结合后,易溶于电解液造成的容量损失.同时,共聚物骨架的共轭结构单元和极性基团,可在保证材料的导电性的同时增加材料结合锂离子的能力,因此表现出了优异的倍率性能.  相似文献   

16.
锂离子电池由于其较高的能量密度而在我们的日常生活中被广泛使用,比如手机、笔记本电脑和电动汽车。然而,地球上有限的锂资源可能会阻碍其进一步的发展。近来,由于丰富的资源、合适的电化学平台和低廉的价格,钠离子电池正得到大家越来越多的关注,有希望成为下一代主流储能体系。然而,跟锂离子电池类似,钠离子电池的电解液主要是由易燃的有机碳酸酯或醚类溶剂、钠盐和一些添加剂组成,这就带来了安全隐患。此外,钠金属具有比锂更高的化学活性,导致钠离子电池可能具有比锂离子电池更大的危险性。为了解决这个安全性问题,我们提出一种不可燃的氟代碳酸酯基电解液。电解液成分是由0.9 mol·L~(-1) Na PF6溶解在氟代碳酸乙烯酯(FEC)和二-2,2-三氟乙基碳酸酯(TFEC)(3:7,体积比)混合溶剂中组成。测试结果表明,该电解液体系不仅具有优异的阻燃能力,而且与钠离子电池的正负极都具有很好地相容性。在此电解液中,普鲁士蓝正极时表现出色的电化学性能,循环50圈后,仍有84 m Ah·g~(-1)的容量。此外,商业化硬碳材料在该电解液中也表现出了较好的电化学性能。这项工作可能为开发下一代安全型钠离子电池提供新途径。  相似文献   

17.
报道了对苯二甲酸镁作为钠离子电池负极材料的研究.以对苯二甲酸和氢氧化镁为原料,采用酸碱中和反应制备了含结晶水的对苯二甲酸镁(MgC8H4O4·2H2O),该材料对钠离子电池表现出了较好的电化学活性、优异的倍率性能以及良好的循环稳定性.在0.5C(1C=300 mA·g-1)倍率下循环50周以后,可逆容量由114mAh·g-1降至95 mAh·g-1,容量保持率高达83%;在2C的倍率下有高达90 mAh·g-1的可逆比容量.另外,在氮气气氛中,400℃进行后续热处理得到了不含结晶水的对苯二甲酸镁(MgC8H4O4),探讨了结晶水对其电化学性能的影响.结果表明,MgC8H4O4·2H2O的比容量、倍率性能以及循环稳定性都明显优于不含结晶水的对苯二甲酸镁.  相似文献   

18.
钛基层状氧化物因具有较低的成本、较好的空气稳定性和循环稳定性,以及较高的安全性等优点,被认为是一种具有潜在应用价值的室温钠离子电池负极材料。本文使用固相法首次设计并合成了一种新型P2相Na_(0.65)Li_(0.13)Mg_(0.13)Ti_(0.74)O_2电极材料。通过延长烧结时间,可以制得混有正交相的样品,进一步研究发现该混合相样品具有更加优异的储钠性能。混合相样品首周可逆容量为96.3 m Ah·g~(-1),而纯P2相仅为85.1 m Ah·g~(-1);在1C倍率下循环400周的容量保持率为89.7%,高于P2相的84.4%,并且倍率性能显著提升(混合相样品56.6 m Ah·g~(-1)/5C vs.纯P2相样品47.1m Ah·g~(-1)/2C)。该研究发现共生的两种结构能够提高材料的离子、电子传导,进而可以改善材料充放电过程中离子、电荷分布的均一性,从而提升材料的循环性能。该研究成果有助于拓展其他层状氧化物材料的研究思路,为提高钠离子电池的能量密度和循环性能提供了可行方法。  相似文献   

19.
本文采用化学共沉淀法制备了MnO_2。通过XRD、BET、SEM、TEM及HRTEM等表征手段研究MnO_2的形貌及结构,结果显示制备的MnO_2由纳米粒子组成,且具有较大的比表面积(124.7 m~2·g~(-1))。将制得的MnO_2应用于超级电容器时,电化学测试结果表明,在电流密度为0.3 A·g~(-1)时,MnO_2的比电容达到194.7 F·g-1,同时有着优秀的倍率特性。循环稳定性测试表明MnO_2在电流密度2 A·g~(-1)的条件下,恒流充放电(GCD)1000次后的电容保持率达到102.7%,显示了MnO_2具有优异的电化学性能。  相似文献   

20.
具有高比容量和低成本的锂硫电池被认为是下一代电池的重要候选者.然而,低的硫利用率、严重的穿梭效应以及金属锂负极枝晶的生长制约其实际应用.在电解液中引入添加剂被证实是一种简单有效的性能改善策略.为此,本文将高浓度的LiI引入到Li-S电池的常规电解液中,研究高浓度的LiI电解液对硫正极的利用、金属锂负极的保护以及对应电池电化学性能的影响.结果表明,高浓度的碘化锂电解液能够在金属锂负极表层形成稳定的保护层,抑制了锂枝晶的产生.与此同时,碘化锂的引入大幅度提高电池的比容量、有效改善电池的倍率性能和循环稳定性.通过优化发现,浓度为0.5 mol·L-1的LiI具有最佳的电化学性能.采用此电解液的锂硫电池,在1 C倍率下,放电容量高达1 200 mAh·g-1. 200次循环之后,容量仍能保持在880 mAh·g-1,容量保持率接近75%.此外,电池展示了良好的倍率性能,在5 C倍率下,放电容量依然高达700 mAh·g-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号