首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 909 毫秒
1.
设计并制作了一种用于X射线管的电子枪。以具有优异电子发射能力的六硼化镧阴极代替传统钨阴极,采用石墨热子加热的夹持式阴极结构;电子光学系统采用静电自聚焦方式,设计了具有梯形聚焦槽的单圆筒电极聚焦结构,避免了聚焦电极的引出;完成了阴极罩、阴极筒以及陶瓷芯柱等阴极组件的设计与封接。测试结果表明,当六硼化镧阴极为4.5 mm×0.8 mm的平面发射体结构时,在阴极温度1 500℃,阴阳极间距3.5 mm,阳极电压2 500 V条件下,热发射电流达到65 m A,且发射稳定性良好。在120 k V阳极电压下,电子枪在X射线样管中的性能测试结果表明,样管具有良好的电压电流开关特性,验证了该电子枪用于X射线管的优越性。  相似文献   

2.
设计并制作了一种用于X射线管的电子枪。以具有优异电子发射能力的六硼化镧阴极代替传统钨阴极,采用石墨热子加热的夹持式阴极结构;电子光学系统采用静电自聚焦方式,设计了具有梯形聚焦槽的单圆筒电极聚焦结构,避免了聚焦电极的引出;完成了阴极罩、阴极筒以及陶瓷芯柱等阴极组件的设计与封接。测试结果表明,当六硼化镧阴极为4.5 mm×0.8 mm的平面发射体结构时,在阴极温度1 500℃,阴阳极间距3.5 mm,阳极电压2 500 V条件下,热发射电流达到65 m A,且发射稳定性良好。在120 k V阳极电压下,电子枪在X射线样管中的性能测试结果表明,样管具有良好的电压电流开关特性,验证了该电子枪用于X射线管的优越性。  相似文献   

3.
在真空环境下,研究了阳极电压和阴极电压对金属热发射电流强弱的影响。实验结果表明,提高阳极电压和阴极电压有利于电子从阴极逸出,使发射电流得到增强,此外,提高阳极电压能够降低阴极临界电压,增大发射电流,为提高热电子发射效率提供了实验基础和理论依据。  相似文献   

4.
讨论了铁电阴极的发射机理, 借助MAFIA对不同电极结构的铁电阴极表面电场分布进行了模拟计算. 计算中发现, 发射面电极结构对铁电阴极表面三界点处的场增强效应影响很大,特别是具有孤岛电极结构的铁电阴极具有更大的三界点场强,从而获得更大和更稳定的发射电流. 通过对电极结构及其工艺的改进,使用PLZT铁电阴极在实验中得到了大于100A的电流.  相似文献   

5.
面向大型脉冲功率装置聚龙一号(PTS装置),以电磁粒子模拟方法(PIC)为依托,围绕真空汇流区双层柱-孔盘旋(DPHC)结构区域,研究电子发射对DPHC结构在电流传输、汇聚过程中的影响。使用全三维大规模并行粒子模拟软件NEPTUNE3D,简化并建立DPHC结构的物理和几何模型,利用全电路数值模拟的方法获得PTS装置真空轴向绝缘堆处开路和短路电压波形曲线作为输入条件,计算得到DPHC结构中磁场强度分布。分别考虑是否存在电子发射过程,获得输出端电流损失随时间变化曲线,经过对比得到峰值时刻由阴极表面电子发射所导致的电流损失率为0.46%~0.48%。  相似文献   

6.
面向大型脉冲功率装置聚龙一号(PTS装置),以电磁粒子模拟方法(PIC)为依托,围绕真空汇流区双层柱-孔盘旋(DPHC)结构区域,研究电子发射对DPHC结构在电流传输、汇聚过程中的影响。使用全三维大规模并行粒子模拟软件NEPTUNE3D,简化并建立DPHC结构的物理和几何模型,利用全电路数值模拟的方法获得PTS装置真空轴向绝缘堆处开路和短路电压波形曲线作为输入条件,计算得到DPHC结构中磁场强度分布。分别考虑是否存在电子发射过程,获得输出端电流损失随时间变化曲线,经过对比得到峰值时刻由阴极表面电子发射所导致的电流损失率为0.46%~0.48%。  相似文献   

7.
 在束流轨迹方程基础上,建立了非层流无碰撞数值模拟模型,并在模型中考虑了束流空间电荷效应、发射度、能散、束心Corkscrew运动、束流横截面分布不均匀等诸多因素,编制数值模拟程序对强流相对论电子束经过磁透镜的轨迹进行了计算。计算结果表明:子束流层数一定时,焦斑直径波动在0.03 mm范围内;随子束流划分层数的不同,计算所得焦斑直径的最大不确定度为±0.05 mm,而焦距几乎不变化,其波动在0.08 cm范围内;随子束流划分层数的增加,焦斑直径计算结果是收敛的,最终收敛值约为1.03 mm。实验得到的焦距为23.2 mm,焦斑直径1.3 mm,实验结果表明焦距绝对误差在3.5 cm范围内,焦斑直径绝对误差在0.4 mm范围内。  相似文献   

8.
 实验利用二极管型电子枪研究了单晶LaB6热阴极的直流发射特性。阴阳极间距5 mm,从直径为2 mm发射体上测得175 mA直流束流(阴极温度约为1 870 K、阴阳极电压6.5 kV、空间电荷限制状态),电流密度为5.57 A/cm2。采用Longo方程拟合直流发射电流,该方法比以往单纯用Child或Richardson- Dushman公式更符合实际。实验还观测了阴极工作环境和表面状态对直流发射的影响,当真空度低于7×10-4 Pa时,阴极发射能力逐渐下降,阴极表面碳、氧污染使发射体功函数升高。长时间加热后,石墨上会蒸镀LaB6,由此会造成热子电阻的下降。分析表明La原子补充不及时和表面气体吸附是影响直流发射能力的主要因素。  相似文献   

9.
提出了一种向内发射磁绝缘振荡器,并给出了微波轴向提取的方法。这种新型结构通过外置阴极、内置阳极,使参与束波作用的轮辐电流通过阳极回流提供了自磁绝缘的角向磁场,有提高器件效率的可能。而外置阴极使阴极的发射面积增大,发射电流密度减小,有利于延长阴极寿命。通过粒子模拟,得到了几何参数与磁绝缘线振荡器输出功率的关系。在电压890 kV,电流56.1 kA下,输出功率为3.6 GW,频率为8.2GHz。  相似文献   

10.
大电流碳纳米管场发射阴极研究   总被引:1,自引:0,他引:1       下载免费PDF全文
报道了在较大发射面积上获得较大场发射电流的碳纳米管场发射阴极。为了加强场发射电流,在丝网印刷浆料中增加一种金属纳米颗粒,金属颗粒增强了碳纳米管发射体和衬底的接触,提高碳纳米管和衬底的粘附作用。利用改进后的丝网印刷方法制备了大电流碳纳米管场发射阴极,测得最大发射电流为68.0 mA,阴极有效发射面积约1.1 mm2,发射电流密度约6.2 A/cm2;并成功将改进方法制备的大电流场发射碳纳米管阴极应用于场发射真空器件原型。实验证明这种具有较大发射电流和较大发射电流密度的场发射能够满足部分大功率电子器件的需求。收稿日期:; 修订日期:  相似文献   

11.
We report on the fabrication of cold cathode emitter and the design parameter simulation of a functional field emission-based pressure sensor. This device comprises a membrane made of metallic compound acting as the anode in front of a flat cold cathode emitter. First, the mechanical deflection of a diaphragm under selected input pressures is modeled. The current density distribution in the deflected diaphragm is then calculated using realistic field emission characteristics from fabricated sulfur doped boron nitride (S-BN) cold cathode device. The total current output was found by integrating the measured current density of the fabricated electron emitter device over the entire diaphragm area of the membrane as function of external pressure. The results show that conventional silicon membranes would pose problems when implemented in a real field emission device, and show how the use of unconventional materials (i.e., TiN) can help overcome these problems.  相似文献   

12.
A repetitively pulsed electron-beam-controlled CO2 laser driven by an electron accelerator with a plasma electron emitter based on low-pressure glow discharge with hollow anode and cathode is presented. The application of the proposed emitter makes it possible to sharply increase the current and to control the electron-beam duration and, hence, the energy and time characteristics of the laser. It is demonstrated that the radiation pulse duration ranges from 300 to 1200 μs, whereas the radiation energy amounts to 200 J at an efficiency of 18%. In the course of lasing, the focal spot is not affected by the heterogeneous heating of the active medium. A significant heterogeneity in the gas flow upon an incomplete renewal of the gas in the zone filled with radiation leads to an increase in the focal spot owing to the wavefront distortions. Original Text ? Astro, Ltd., 2006.  相似文献   

13.
The importance of having high local cathode spot pressures for the self-sustaining operation of a thermal arc plasma on a cold cathode is theoretically investigated. Applying a cathode sheath model to a Cu cathode, it is shown that cathode spot plasma pressures ranging 7.4-9.2 atm and 34.2-50 atm for electron temperatures of ~1 eV are needed to account for current densities of 109 and 1010 A·m-2, respectively. The study of the different contributions from the ions, the emission electrons, and the back-diffusing plasma electrons to the total current and heat transfer to the cathode spot has allowed us to show the following. 1) Due to the high metallic plasma densities, a strong heating of the cathode occurs and an important surface electric field is established at the cathode surface causing strong thermo-field emission of electrons. 2) Due to the presence of a high density of ions in the cathode vicinity, an important fraction of the total current is carried by the ions and the electron emission is enhanced. 3) The total current is only slightly reduced by the presence of back-diffusing plasma electrons in the cathode sheath. For a current density jtot=109 A·m-2 , the current to the cathode surface is mainly transported by the ions (76-91% of jtot while for a current density jtot = 1010 A·m-2, the thermo-field electrons become the main current carriers (61-72% of jtot). It is shown that the cathode spot plasma parameters are those of a high pressure metallic gas where deviations from the ideal gas law and important lowering of the ionization potentials are observed  相似文献   

14.
Results of the investigation of the pulse control of an electronic emitter with a plasma limited to a boundary ionic layer are presented. The control of the emitter current was realized by modulating the plasma area by means of varying the extent of the ionic layer in the emission channel. It is shown that the time for the formation of the front and trailing edge of the current pulse depends on the time for establishing a stationary distribution of ions in the boundary layer. For an electronic emitter, based on a reflective discharge with a field cathode, this time is of about 10–8 sec. The experimental setup is described, and the results obtained in the pulse control of an emitter current through modulation of the emission area are presented.Institute of Automated Control Systems and Radioelectronics, Tomsk. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 28–33, May, 1992.  相似文献   

15.
Intense emission from a grid-stabilized plasma cathode based on a glow discharge with an expanded anode area is studied. In the electrode system of the ion source, the potential difference between a large-mesh grid electrode (a hole diameter of 4–6 mm) and cathode and anode plasma reaches 200 V and the glow discharge current is up to 1 A. The current distribution over the electrodes of the plasma cathode is taken, and the dependences of the electron extraction efficiency and electron-emitting-plasma potential on the gas pressure and discharge parameters are obtained. A relationship between the geometric parameters of the grid, cathode plasma potential, and efficiency of electron extraction from the plasma is derived. It is shown that stable intense emission from the plasma cathode can be provided in wide ranges of gas pressure and discharge current by varying the geometry and mesh size of the plasma cathode grid. Discharge contraction in the grid plane at elevated gas pressures is explained. It is assumed that the emitting plasma becomes inhomogeneous due to variation in the thickness of near-electrode layers in the holes of the grid, which makes the distribution of the emission current from the plasma more nonuniform.  相似文献   

16.
To investigate the ignition of arc spots on cold cathodes under defined conditions, a special experimental setup was developed. An arc ignited between horn electrodes in a pure argon gas atmosphere is blown magnetically against a third so called commutation electrode, which is negatively biased against the arc plasma. The ignition of arc spots on this cathode was investigated by electrical measurements and high-speed photography. The arc traces of short current pulses were examined by in situ optical microscopy of the cathode surface. Two different modes of arc-spot ignition were observed: an initiation by a diffuse glow discharge, which may pass into a constricted arc spot, and an immediate formation of a constricted arc spot. The two modes of arc-spot ignition at atmospheric pressure were attributed to different surface structures, which are characterized by broad or narrow distributions of local ion current density enhancement factors. Ion current density enhancement may raise the field strength and temperature on the tips of microprotrusions so far that they emit electrons. A sufficiently high density of small emission sites produces locally such a high average current density that a plasma channel and an arc spot on the cathode surface arc formed. With lower pressure, the influence of the surface structure is reduced and pushed back by Townsend-γ emission  相似文献   

17.
The field emission performances of normal-gate cold cathode, which is composed of different multi-wall carbon nanotubes (MWCNTs) bundles array are calculated. The device parameters such as the arrangement of bundles, array density, gate location, gate voltage, anode voltages and anode–cathode distance affect the field emission properties, which is discussed in detail. The results reveal that the hexagon bundles array needs a lower threshold voltage than square array to reach high field enhancement factor and large emission current density. The emission current density is two orders larger than that of the oxide emitter. The optimal bundles array densities of hexagon and square array to get field enhancement factor are 0.0063 and 0.00375 μm−2, respectively. Meanwhile, the field emission performances are impacted critically by gate location and gate voltage. Field emission properties changed little while the anode–cathode distance varies within tens of micrometers, which increases the process-friendliness of CNTs field emission devices.  相似文献   

18.
The quenching phenomenon, i.e., a sudden interrupt of the discharge current, was investigated in a pseudospark discharge with charging voltage of 2.5 kV, maximum current of 2 kA and discharge duration of 3 μs. The working gas was hydrogen at a pressure of 40 Pa. Concerning electrode material and geometric parameters, molybdenun electrodes were chosen with hole diameters of 5 mm; the electrode distance was 3 mm. In this parameter range, a temporal correlation of current quenching and the occurrence of metal vapor could be detected by means of time-resolved optical spectroscopy. With each current interruption a sudden increase of emission from neutral molybdenum atoms as well as an increase of cathode spot emission, which is spatially localized on the cathode, occurs. Also oxygen ions were observed which show a similar time-dependence, however with a significant delay of the order of 200 ns. The results are discussed in the scope of the mechanism proposed for quenching, i.e., ion depletion in the plasma boundary layer, and the mechanisms occurring in the high current phase of a pseudospark discharge  相似文献   

19.
Ion emission from the plasma of a low-pressure (≈5×10−2 Pa) glow discharge with electrons oscillating in a weak (≈1 mT) magnetic field is studied in relation to the cold hollow cathode geometry. A hollow conic cathode used in the electrode system of a cylindrical inverted magnetron not only improves the extraction of plasma ions to ≈20% of the discharge current but also provides the near-uniform spatial distribution of the ion emission current density. The reason is the specific oscillations of electrons accelerated in the cathode sheath. They drift in the azimuth direction along a closed orbit and simultaneously move along the magnetic field toward the emitting surface of the plasma. A plasma emitter with a current density of ≈1 mA/cm2 over an area of ≈100 cm2 designed for an ion source with an operating voltage of several tens of kilovolts is described.  相似文献   

20.
A model of near-electrode processes is applied here to describe the behavior of cathode spots on graphite cathode in vacuum arc. The physical model is based on a kinetic treatment of cathode evaporation, electron emission from the cathode, and plasma production. The model consists of physical assumptions and a system of equations that are formulated in the paper. Spot parameters, such as cathode erosion rate, cathode potential drop, cathode surface temperature, current density, electric field, and plasma density, temperature, and velocity in the near-electrode region are calculated numerically. The calculation includes the dependence of spot parameters on spot current and spot lifetime. The variation of spot parameters as a function of spot lifetime are very strong at lifetimes shorter than 10 μs. The calculations indicate that Joule heating in the cathode body is significant, and may exceed cathode heating by the ion heat flux. Calculated spot parameters are compared with the corresponding experimental data for relatively low arc currents (<100 A) and their agreement is discussed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号