首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用共沉淀法制备了PEG修饰的Fe3O4纳米粒子,用十二烷基苯磺酸钠(SDBS)水溶液将其分散后修饰在装有磁铁的碳糊电极表面,制成SDBS-PEG-Fe3O4磁性电极。循环伏安(CV)测定结果表明,该修饰电极对多巴胺(DA)有良好的电催化作用,DA的氧化峰电流相当于裸电极的5倍,氧化峰和还原峰的电位差从0.221 V减小到0.044 V,可逆性得到了提高。采用方波伏安法测定DA,其氧化峰电流与浓度分别在5.0×10-7~2.0×10-5mol/L和2.0×10-5~1.0×10-4mol/L范围内呈线性关系,r2分别为0.996 2和0.976 2;检出限(S/N=3)达1.4×10-7mol/L。该修饰电极可基本消除抗坏血酸(AA)和尿酸(UA)等共存物质对DA测定的干扰,用于盐酸多巴胺注射液样品的测定,结果令人满意。  相似文献   

2.
刘雪  王兰  樊阳  刘凤杰 《化学通报》2012,(5):458-462
利用在玻碳电极上修饰了TiO2-石墨烯-Nafion复合膜制得的修饰电极进行多巴胺(DA)和尿酸(UA)的同时测定。用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了该修饰电极的电化学行为。在pH为7.0的磷酸盐缓冲液(PBS)中,修饰电极对于DA和UA的电化学氧化具有良好的电催化性能。DA和UA的氧化峰电流分别在2~120和60~300μmol/L浓度范围内呈良好的线性关系,检出限分别为0.066和0.102μmol/L。实验结果表明,TiO2-石墨烯-Nafion复合膜修饰电极显著提高了检测的灵敏度,并表现出良好的选择性和重现性。  相似文献   

3.
采用溶胶法制备了介孔碳/纳米金复合材料,并利用透射电子显微镜、扫描电子显微镜和X射线衍射仪进行了表征。将合成的复合材料修饰于玻碳电极表面,用循环伏安法同时测定多巴胺(DA)、抗坏血酸(AA)和尿酸(UA)。在pH 7.2磷酸盐缓冲溶液中,DA、AA和UA的氧化峰得到了很好的分离;和裸电极比,介孔碳/纳米金修饰电极对DA、AA和UA具有良好的电催化作用,DA、AA和UA的氧化峰的峰电流强度分别增加1.7,2.0,12倍,3种物质的浓度分别在0.20~45.8,4.0~792.0,0.06~166.0μmol·L-1范围内与其峰电流强度呈线性关系,检出限(3S/N)分别为0.075,7.5,0.021μmol·L-1。  相似文献   

4.
制备了聚乙烯亚胺(PEI)功能化的石墨烯(G)修饰电极以实现抗坏血酸(AA)、 多巴胺(DA)、 尿酸(UA)和色氨酸(Trp)的分离及同时测定. 采用红外光谱(FTIR)、 紫外-可见吸收光谱(UV-Vis)、 X射线粉末衍射仪(XRD)和透射电子显微镜(TEM)对电极修饰材料进行了表征, 并优化了该修饰电极同时测定AA, DA, UA和Trp的实验条件. 在聚乙烯亚胺功能化石墨烯修饰的玻碳电极(PEI-G/GCE)上实现了AA, DA, UA 和Trp氧化峰的分离, AA-DA, DA-UA和UA-Trp的氧化峰电位差分别为298, 130和350 mV. 该修饰电极对AA, DA, UA和Trp的检测线性范围分别为50~5800, 30~2570, 0.05~400和6~1000 μmol/L; 检出限分别为16.67, 10, 0.017和2 μmol/L.  相似文献   

5.
将超声分散的氧化石墨烯(GO)悬浮液滴涂于玻碳电极(GCE)表面,制备成GO/GCE,并用扫描电子显微镜(SEM)和电化学阻抗谱(EIS)对GO/GCE进行表征,利用差分脉冲伏安法(DPV)、循环伏安法(CV)对多巴胺(DA)和尿酸(UA)进行了电化学测定。研究了pH对DA和UA电化学行为的影响并计算相关的动力学参数。结果表明:该修饰电极对DA和UA的氧化还原反应具有良好的电化学催化作用,在1.0~98.0μmol/L和0.5~90.0μmol/L范围内峰电流与DA和UA浓度呈良好的线性关系,检出限分别为0.50μmol/L和0.25μmol/L。而且可以在抗坏血酸(AA)共存下同时测定DA和UA。该传感器具有良好的选择性与稳定性,有望应用于DA和UA的同时测定。  相似文献   

6.
研究多巴胺(DA)和抗坏血酸(AA)在聚伊文思蓝(Evans Blue)修饰电极上的伏安行为,建立差示脉冲伏安测定法.在pH4.5磷酸盐缓冲液中,聚伊文思蓝修饰电极对DA和AA有显著的增敏和电分离作用.DA和AA氧化峰电流与浓度分别在1.0×10-6~3.0×10-5mol/L和5.0×10-6~1.05×10-4mol/L范围内呈良好的线性关系,检测限分别为2.5×10-7mol/L和3.0×10-7mol/L.当DA与AA共存时,由该修饰电极检测的二者氧化峰电位差达184 mV,故可同时测定DA和AA,并有效消除其它组分对DA测定的干扰,已用于实际样品中DA和AA含量的测定,结果令人满意.  相似文献   

7.
张英  任旺  李敏娇 《电化学》2012,(1):79-83
研究柠檬酸(CA)修饰玻碳电极(CA/GC)在抗坏血酸(AA)、多巴胺(DA)和尿酸(UA)混合体系中的循环伏安(CV)行为.结果表明,AA、DA和UA在CA/GC电极上氧化峰电流增大,且三者氧化峰电位明显分离(ΔEp(DA,AA)=170 mV,ΔEp(DA,UA)=130 mV,ΔEp(AA,UA)=300 mV).据此,可同时检测AA、DA和UA.在优化的实验条件下,AA、DA和UA的氧化峰电流与其浓度分别在2.0×10-6~1.5×10-3mol.L-1,6.0×10-7~1.0×10-3mol.L-1和6.0×10-7~1.0×10-3mol.L-1范围内呈线性关系.该电极重现性好,可用于盐酸多巴胺针剂DA、VC片剂AA及人体尿液UA的测定.  相似文献   

8.
氮掺杂碳纳米管修饰电极的电化学行为   总被引:1,自引:0,他引:1  
董俊萍  曲晓敏  王利军  王田霖 《化学学报》2007,65(21):2405-2410
制备了氮掺杂改性的碳纳米管, 并用循环伏安法(CV)测定了多巴胺(DA)和抗坏血酸(AA)在不同氮含量的碳纳米管修饰电极上的电化学行为. 结果表明, 氮掺杂碳纳米管修饰电极对AA和DA有不同的电催化行为, 其中高氮含量修饰电极对AA的催化作用强, 而低氮含量修饰电极对DA的催化作用强. 微分脉冲伏安法(DPV)的结果显示, DA的氧化峰电流与其浓度在5.0×10-6~2.0×10-4 mol/L范围内呈良好的线性关系, 检出限达1.64×10-6 mol/L (S/N=3); AA氧化峰电流与其浓度在3.0×10-5~1.0×10-2 mol/L范围内呈良好的线性关系, 检出限达3.26×10-6 mol/L (S/N=3). 该修饰电极在AA大量存在(AA浓度为DA浓度两万倍)时可选择性地实现多巴胺的测定而不造成干扰.  相似文献   

9.
在石墨烯纳米片修饰电极(GN/GCE)上,通过电聚合的方法制备了新颖的桑色素/石墨烯复合修饰电极(M/GN/GCE).以多巴胺(DA)和抗坏血酸(AA)为模型化合物,运用循环伏安法(CV)和差示脉冲伏安法(DPV)考察了该复合修饰电极的电催化行为.在pH 7.0的PBS中,DA和AA分别在0.172 V和-0.183 V产生氧化峰,峰位差达355 mV.与单一修饰电极(桑色素修饰电极(M/GCE)、石墨烯修饰电极(GN/GCE)及裸玻碳电极(GCE))相比,DA在M/GN/GCE上的峰电流显著增大.在优化的实验条件下,DA在2.0×l0-8~5.5×10-4 mol/L浓度范围内与其峰电流具有良好的线性关系,检出限达9.0×10-9 mol/L.  相似文献   

10.
利用电聚合方法在石墨烯修饰的玻碳电极表面制备了聚亚甲基蓝/石墨烯修饰电极( PMB/GH/GCE).采用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为.在pH 6.9的磷酸盐缓冲溶液中,DA和AA分别在0.208 V和-0.108 V处产生灵敏的氧化峰,与其在聚亚甲基蓝和石墨烯单层修饰电极上的电化学行为相比,两者的峰电流明显增加,峰电位差达316 mV.研究表明,电聚合方法使亚甲基蓝牢固地非共价修饰到石墨烯上,并产生协同增效作用,较好地提高了电极的灵敏度和分子识别性能,有利于在大量AA存在下实现对DA的选择性测定.在1.00×10-3 mol/L AA的存在下,DA的差分脉冲伏安法峰电流与其浓度在1.00×10--7~5.00×10-3 mol/L范围内呈良好的线性关系,检出限达1.00 × 10-6mol/L.将该方法用于盐酸多巴胺注射液的测定,结果满意.  相似文献   

11.
采用循环伏安法制备了聚三聚氰胺-石墨烯复合膜修饰电极(poly-(MA)-ERGO/GCE)。研究了抗坏血酸(AA)、尿酸(UA)和多巴胺(DA)在该修饰电极上的电化学行为。结果表明,该修饰电极对AA、UA和DA均有良好的电化学响应,且三者的氧化峰在该修饰电极上可完全分离。据此建立了在大量AA存在下同时测定UA和DA的新方法。在优化条件下,微分脉冲伏安法(DPV)测定UA和DA的线性范围均为1.0×10~(-8)~5.0×10-6mol·L~(-1),检出限(3sb)均为5.0×10~(-9)mol·L~(-1)。  相似文献   

12.
多壁碳纳米管修饰碳黑微电极同时测定多巴胺和抗坏血酸   总被引:1,自引:0,他引:1  
制备了多壁碳纳米管修饰碳黑微电极,研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为.实验表明,在pH 7.0的PBS缓冲溶液中,该修饰电极对DA和从均具有显著的催化氧化作用,AA与DA的氧化电位分别为30 mV和280 mV(vs.SCE).利用二次导数线性扫描伏安法测定,DA与AA的线性范围分别为6.0×10-9~2.0×10-4 mol/L和2.0×10-7~1.0×10-3mol/L,检出限为2.0×10-9mol/L 和1.0×10-7mol/L.方法已用于人工合成样品的分析.  相似文献   

13.
采用电聚合方法将茜素红非共价修饰到碳纳米管上,制备了聚茜素红/碳纳米管修饰电极.以多巴胺(DA)和抗坏血酸(AA)为模型化合物,研究该修饰电极的电催化作用.结果表明:电聚合法使茜素红牢固地修饰到碳纳米管上,能显著提高电极的灵敏度和分子识别性能.DA和AA的氧化峰位分离达240 mV.在AA的存在下,DA的差分脉冲伏安法峰电流在1×10-7~1×10-5 mol/L范围内呈良好的线性关系,检测下限达1×10-7 mol/L.  相似文献   

14.
李云龙  苏招红  陈超  孟越  谢青季 《应用化学》2011,28(9):1046-1051
基于多巴胺(DA)在多壁碳纳米管(MWCNTs)修饰玻璃碳(GC)电极上的电聚合,制得聚多巴胺(PDA)/MWCNTs/GC电极,并对该修饰电极进行了电化学阻抗谱 (EIS)和循环伏安法(CV)表征。 在该修饰电极上,DA呈现良好的电化学行为。在pH=7.4磷酸缓冲溶液中其氧化电流显著高于在裸电极上的响应,且能有效地抑制2.0 mmol/L抗坏血酸(AA)或K4Fe(CN)6的直接电化学响应,表明MWCNTs可增敏信号,且阳离子选择透过性PDA膜可抑制阴离子的电化学干扰。 采用CV实验检测DA,DA氧化的半微分伏安峰高(ipa-sd)与多巴胺浓度在0.08~1.76 μmol/L范围内呈线性关系,在无抗坏血酸和有0.5 mmol/L抗坏血酸共存时的线性回归方程分别为ipa-sd(μA/s1/2)=0.107+0.405c(μmol/L)(r2=0.986)和ipa-sd(μA/s1/2)=0.628+0.649c(μmol/L)(r2=0.992),检测限均为8.0×10-8 mol/L(S/N=3)。 该法用于盐酸多巴胺注射液中多巴胺的快速测定,结果满意。  相似文献   

15.
利用电聚合方法在石墨烯修饰的玻碳电极表面制备了聚亚甲基蓝/石墨烯修饰电极(PMB/GH/GCE)。采用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为。在pH 6.9的磷酸盐缓冲溶液中,DA和AA分别在0.208 V和-0.108 V处产生灵敏的氧化峰,与其在聚亚甲基蓝和石墨烯单层修饰电极上的电化学行为相比,两者的峰电流明显增加,峰电位差达316 mV。研究表明,电聚合方法使亚甲基蓝牢固地非共价修饰到石墨烯上,并产生协同增效作用,较好地提高了电极的灵敏度和分子识别性能,有利于在大量AA存在下实现对DA的选择性测定。在1.00×10-3mol/L AA的存在下,DA的差分脉冲伏安法峰电流与其浓度在1.00×10-7~5.00×10-3mol/L范围内呈良好的线性关系,检出限达1.00×10-8mol/L。将该方法用于盐酸多巴胺注射液的测定,结果满意。  相似文献   

16.
通过电化学还原法制备MnO_2纳米线/还原石墨烯复合修饰电极(MnO_2-RGO/GCE),用于多巴胺(DA)的检测。采用扫描电镜和X-射线粉末衍射对不同的修饰电极微观形貌进行了表征,优化了电化学还原条件和测定DA实验条件。此外,还研究DA在裸电极及RGO或MnO_2-RGO修饰电极上的循环伏安响应。MnO_2-RGO/GCE复合修饰电极实现AA、DA和UA氧化峰的有效分离,AA-DA和DA-UA的氧化峰电位差分别为268和128 m V。检测DA的线性范围为0.06~1.0μmol/L和1.0~80μmol/L,检出限为1.0 nmol/L(S/N=3)。制备的MnO_2-RGO/GCE成功用于人血清样品的多巴胺含量分析。  相似文献   

17.
用循环伏安法制备了聚对氨基苯磺酸/氧化石墨烯修饰玻碳电极(PABSA/GO/GCE),研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为,并建立了同时测定多巴胺和抗坏血酸电化学分析新方法,相对于裸玻碳电极,该电极测定DA和AA的峰电流明显增加。实验结果表明:在实验条件下,DA测定的线性范围为0.50~300μmol/L;检出限为5.0μmol/L。AA测定的线性范围是0.10~2.4 mmol/L,检出限为0.50μmol/L。  相似文献   

18.
碳纳米管修饰电极对多巴胺和肾上腺素的电分离及同时测定   总被引:17,自引:0,他引:17  
研究了多巴胺 (DA)和肾上腺素 (EP)在多壁碳纳米管 (MWNT)修饰电极上的电化学性质 ,发现该修饰电极对神经递质DA和EP有显著的增敏和电分离作用。还原峰电位差达ΔEp=390mV ,可同时测定DA和EP。DA和EP的还原峰电流与其浓度分别在 2 .0× 10 -6~ 1.0× 10 -3 mol/L和 1.0× 10 -6~ 1.0× 10 -3 mol/L浓度范围内呈良好的线性关系 ;方法的检出限分别为 1× 10 -6mol/L和 5× 10 -7mol/L。由于抗坏血酸 (AA)在MWNT修饰电极上的氧化是不可逆的 ,因此利用还原峰进行测定 ,消除了AA对DA和EP的干扰  相似文献   

19.
采用循环伏安法制备了电还原柠嗪酸膜修饰碳糊电极(ECA/CPE),研究了多巴胺(DA)在该修饰电极上的电化学行为。在pH 7.0的磷酸盐缓冲溶液中,ECA/CPE对DA具有明显的电催化作用,且DA呈现出一对准可逆的氧化还原峰,其氧化峰电流与DA浓度在3.7×10-7~8.2×10-5mol/L和1.04×10-4~9.34×10-4mol/L范围内呈良好的线性关系,检出限为1×10-7mol/L(S/N=3)。使用微分脉冲伏安法,DA和尿酸(UA)在ECA/CPE上的氧化峰能完全分离,且峰电流与浓度呈良好的线性关系。该电极可用于盐酸多巴胺针剂中DA的测定以及人体尿液中UA的检测。  相似文献   

20.
多巴胺(DA)是人类神经系统的神经递质之一,也是诊断多种神经疾病的重要生物标志物,因此,快速准确地检测DA浓度受到广泛关注。本文以普鲁士蓝(PB)为前体制备了一种多孔Fe-N-C纳米颗粒簇,将其修饰在玻碳电极(GCE)表面,发现该修饰电极在使用线性扫描伏安法(LSV)和差分脉冲伏安法(DPV)时能够有效地降低尿酸(UA)和抗坏血酸(AA)的电化学氧化响应,而不影响DA的电化学氧化反应,并能够将三者的氧化峰有效分开,从而可以实现对DA的选择性电化学分析。研究结果表明,在含有高浓度的UA(100μmol/L)和AA(100μmol/L)的DA混合溶液中使用LSV检测DA,分段线性范围可以达到5~100μmol/L和100~700μmol/L,灵敏度分别为8.32×10~(-2)和3.44×10~(-2)A·(mol/L)~(-1),检测下限为5μmol/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号