首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
碱金属元素对稀土激光微等离子体基体效应研究   总被引:1,自引:1,他引:0  
本文以激光微区光谱分析仪结合CCD光栅光谱仪为分析系统,在减压氩气环境下,以EuⅡ420.505 nm、SmⅡ443.434 nm、DyⅡ400.048 nml、TmⅡ424.215 nm为分析线,研究了碱金属元素锂、钠、钾对稀土激光微等离子体的基体效应.结果表明:掺有碱金属元素的基体与空白基体相比,谱线强度都有明显的增强,其中钾元素的增强程度最大,得出钾元素是一种很好的光谱栽体;掺有碱金属元素的基体所对应的电子温度和电子密度与空白基体相比有明显的下降,认为分析谱线增强的主要机理为,碱金属元素的掺入降低了等离子体的电子温度,使其向谱线的标准温度靠近所致.  相似文献   

2.
利用单脉冲YAG激光、YGJ Ⅱ激光微区分析仪结合光电检测系统 ,在减压氩气环境下实验研究了金属分析样品发射光谱中CuⅠ 32 4 7nm和CuⅠ 32 7 4nm的时间特性、谱线强度及空间分布 ,并与空气环境下的实验结果进行了比较。实验结果表明在减压氩气环境下 ,激光微区发射光谱与环境气体、环境气压和辅助激发参数密切相关。当辅助电极端面直径为 1 5mm、辅助电极距分析样品表面高度为 4mm、辅助电极间距为3mm、辅助激发电压为 1 30 0V、氩气压力 33 2kPa时 ,CuⅠ 32 4 7nm和CuⅠ 32 7 4nm谱线的发射时间比空气下延长了 50 0 μs,谱线强度约为相同气压空气环境下的 4倍 ,约为 1个大气压空气环境下谱线强度的 2倍 ,谱线的半最大值宽度明显变窄。因此氩气环境延长了谱线的发射时间 ,减少了自吸效应 ,使谱线强度明显增强 ,谱线品质得到显著改善。  相似文献   

3.
空气中激光烧蚀Cu产生等离子体发射光谱的研究   总被引:6,自引:3,他引:3  
利用Q-开关Nd:YAG激光器产生的1.06 μm、10 ns的脉冲激光聚焦在空气中的Cu靶上,观测了激光诱导的Cu等离子体发射光谱.采用不同的激光能量,分析了波长范围为440 nm到540 nm的空间分辨发射光谱.在局部热力学平衡(LTE)条件近似下,根据谱线的相对强度,得到了等离子体电子温度约在104 K以上,给出了靶面附近电子温度的空间演化规律,并探讨了N(Ⅱ)500.52 nm谱线的谱线强度和半高全宽随激光能量的变化规律.  相似文献   

4.
采用YJG-Ⅱ激光微区分析仪结合CCD光栅光谱仪构成的激光微等离子体光谱分析系统,在减压氩气环境下,以土壤标样为样品,测量了土壤中铝元素和钙元素的含量,对激光微等离子体光谱分析法定量分析土壤中元素的准确度与可行性进行了研究。实验中分别以Al Ⅰ 394.40 nm和Ca Ⅱ 396.85 nm为分析线,采用“三标准试样法”,由计算机拟合logI~logC工作曲线,对土壤中铝、钙进行了测量。结果表明:对此两种元素定量分析的相对标准偏差(RSD)最大为5.80%,定量分析结果与标准值的相对偏差最大为7.65%,说明该方法对土壤中铝、钙的测定满足分析精确度的要求。  相似文献   

5.
为了研究样品温度对激光诱导击穿Cu等离子体特征参数的影响,以黄铜为研究对象,在优化的实验条件下采用波长为532 nm的Nd∶YAG纳秒脉冲激光诱导激发不同温度下的块状黄铜,测量了Cu等离子体的特征谱线强度和信噪比;同时在局部热平衡条件下利用Boltzmann斜线法和Stark展宽法分析计算了不同的样品温度条件下等离子体电子温度和电子密度。实验结果表明,在激光功率为60 mW时,随着样品温度的升高,Cu的特征谱线强度和信噪比逐渐增加,样品温度为130 ℃时达到最大值,然后趋于饱和。计算表明,黄铜样品中Cu元素Cu Ⅰ 329.05 nm,Cu Ⅰ 427.51 nm,Cu Ⅰ 458.71 nm,Cu Ⅰ 510.55 nm,Cu Ⅰ 515.32 nm,Cu Ⅰ 521.82 nm, Cu Ⅰ 529.25 nm,Cu Ⅰ 578.21 nm八条谱线在130℃的相对强度相较于室温(18 ℃)下分别提高了11.55倍、4.53倍、4.72倍,3.31倍、4.47倍、4.60倍、4.25倍、4.55倍,光谱信噪比分别增大了1.35倍,2.29倍、1.76倍、2.50倍、2.45倍、2.28倍、2.50倍,2.53倍。分析认为,升高样品温度会增大样品的烧蚀质量,相对于温度较低状态增加了等离子体中样品粒子浓度,进而提高等离子体发射光谱强度。所以,适当升高样品温度能够提高谱线强度和信噪比,从而增强LIBS技术检测分析光谱微弱信号的测量精度,改善痕量元素的检测灵敏度。同时研究了改变样品温度时等离子体电子温度和电子密度的变化趋势。计算表明,当样品温度从室温上升到130 ℃的过程中,等离子体的电子温度由4 723 K上升到7 121 K时基本不再变化。这种变化规律与发射谱线强度和信噪比变化趋势一致。分析认为,这主要是由于在升高样品温度的初始阶段,激光烧蚀量增大,等离子体内能增大,从而导致等离子体电子温度升高。当激光烧蚀样品的量达到一定值后不再变化,激光能量被激发溅射出来的样品蒸发物以及尘粒的吸收、散射和反射,导致激光能量密度降低,电子温度趋于饱和,达到某种动态平衡。选用一条Cu原子谱线(324.75 nm)的Stark展宽系数计算激光等离子体的电子密度,同时研究改变样品温度时等离子电子密度的变化趋势,计算表明在样品温度为130 ℃时,Cu Ⅰ 324.75 nm对应的等离子电子密度相较于室温(18 ℃)条件下增大了1.74×1017 cm-3。该变化趋势与电子温度的变化趋势一致。适当升高样品温度使得电子密度增大,从而提高电子和原子的碰撞几率,激发更多的原子,这是增强光谱谱线强度的原因之一。由此可见,升高样品温度是一种便捷的提高LIBS检测灵敏度的有效手段。  相似文献   

6.
等电子法测量小能量激光打靶等离子体电子温度   总被引:4,自引:0,他引:4       下载免费PDF全文
以低Z的CHO薄膜作为样品靶,在星光激光装置上以小能量激光辐照样品靶产生温度较低的等离子体,采用每毫米2400线的平焦场光栅谱仪测量等离子体发射的碳和氧离子发射谱线强度比,并与理论计算相应线强比较,获得了电子温度,建立了等电子法测量较低温度(100eV左右)等离子体电子温度的诊断技术. 关键词: 电子温度 激光等离子体 等电子x射线谱法  相似文献   

7.
环境气氛对高能量激光诱导等离子体辐射特性的影响   总被引:1,自引:1,他引:0  
采用高能量钕玻璃激光器(~25 J)激发诱导金属等离子体,研究了环境气体及其压力对等离子体辐射特性的影响。实验结果表明,相同压强下,氩气中等离子体的谱线强度明显高于空气中等离子体的谱线强度;0.8×105Pa氩气条件下,光谱标钢等离子体的谱线强度达到了最大值;随着环境气压的增大,谱线自吸明显增强,当环境气压达到(0.8~0.93)×105Pa时,标样铝的AlⅠ308.22 nm和AlⅠ309.27 nm两条谱线产生了严重自蚀;另外,等离子体的激发温度也随环境气压的增大而增大,0.93×105Pa氩气条件下标钢等离子体的激发温度相对于0.43×105Pa时升高了近1 500 K。  相似文献   

8.
空气中YAG激光诱导Cu等离子体空间特性的研究   总被引:1,自引:0,他引:1  
在空气中利用Nd:YAG脉冲激光诱导金属Cu靶,产生激光等离子体羽,并获得等离子体羽的空间谱;研究了空间谱线结构;分析了不同空间位置处电子温度和电子密度的空间演化规律;并对等离子体光谱的特性和产生机制进行了讨论.结果表明:谱线结构、谱线强度和等离子体的电子温度及电子密度都与空间位置变化密切相关,特征谱强度最大值出现在距靶面0.75~1.0mm的空间位置处,此处CuⅠ谱线相对强度最强,在1.25mm空间位置处的电子温度比周边的电子温度偏低,但此处电子密度反而升高,这种现象可以由级联效应得到解释.  相似文献   

9.
为了适应核物理与核分析实验教学的需要,本文将激光诱导激光光谱测量以创新实验的形式引入到核工程类专业实验中.通过将纳秒激光脉冲与不同靶材作用,测量样品中各类元素的LIBS谱线,结合理论分析提取激光等离子体的电子温度和等离子体密度.假设单一元素谱线获得的等离子体密度为混合样品等离子体密度,计算得到未知重元素Fe的原子谱线展宽参数.  相似文献   

10.
利用波长为1 064 nm,最大能量为500 mJ的Nd∶YAG脉冲激光器在室温,一个标准大气压下对Mg合金冲击,改变激光能量,得到相应的Mg等离子体特征谱线。分析谱线,发现谱线有不同的演化速率,同时得到了MgⅠ,MgⅡ离子谱线,证明此实验条件下,激光能量足够Mg合金靶材充分电离。选择了相对强度较大的MgⅠ 383.2 nm, MgⅠ 470.3 nm, MgⅠ 518.4 nm三条激发谱线,利用这些发射谱线的相对强度计算了等离子体的电子温度,激光能量为500 mJ时,等离子体温度为1.63×104 K。实验结果表明:在本实验条件下,Mg原子可以得到充分激发;在200~500 mJ激光能量范围内,等离子体温度随着激光能量的降低而衰减,在350~500 mJ激光能量范围内的等离子体温度随激光能量的变化速度十分明显,200~350 mJ时等离子体温度变化速度迅速减缓;激光能量为300 mJ时,谱线相对强度明显减弱,低于350和250 mJ的谱线相对强度,不符合谱线相对强度会随着激光能量提高而上升的变化趋势,证明发生了等离子体屏蔽现象,高功率激光产生的等离子体隔断了激光与材料之间的耦合。此时的等离子体温度明显升高,不符合变化趋势,这是由于在发生等离子体屏蔽现象时,激光能量被等离子体吸收,导致等离子体温度上升。  相似文献   

11.
为了提高激光诱导击穿光谱技术(LIBS)的检测灵敏度和辐射光谱特性,采用再加热正交双脉冲结构对样品中的4种元素Fe,Pb,Ca和Mg以及含有不同浓度重金属元素Cr的土壤样品进行分析。研究了4条特征谱线FeⅠ:404.581 nm,PbⅠ:405.78 nm,CaⅠ:422.67 nm和MgⅠ:518.361 nm的光谱强度和信背比随两激光脉冲之间时间间隔的变化关系,获得了两激光脉冲之间最佳的时间间隔为1.0 μs。在单脉冲和双脉冲条件下,得到了4条特征谱线FeⅠ:404.581 nm,PbⅠ:405.78 nm,CaⅠ:422.67 nm和MgⅠ:518.361 nm光谱强度的增强倍数分别为2.23,2.31,2.42和2.10;分析了特征谱线FeⅠ:404.581 nm和CaⅠ:422.67 nm谱线强度随时间的演化特性以及4条特征谱线信背比随光谱采集延时的变化关系,双脉冲能有效延长光谱强度的衰减时间以及提高特征谱线的信背比;比较分析了等离子体温度和电子密度随时间的演化特性,在双脉冲条件下,等离子体温度最大升高了730 K,电子密度最大增加了1.8×1016 cm-3。单脉冲和双脉冲条件下获得重金属元素Cr的检测限分别为38和20 μg·g-1,再加热正交双脉冲技术使元素检测限下降近2倍。以上结果表明:再加热正交双脉冲能有效地提升LIBS技术的检测灵敏度和光谱特性,为进一步降低元素的检测限提供了有效的方法。  相似文献   

12.
在线化学分析需要实现开放环境下的样品取样和电离/激发。相比于激光切削或者激光诱导击穿,大气压微等离子体系统结构简单,更利于小型化。因而基于大气压微等离子体的在线化学分析技术引起行业的广泛关注。为了确定合适的微等离子体源进行样品的在线元素检测,需要进一步了解各放电模式及工作参数下微等离子体的自身特性以及取样效果。该工作主要研究了电弧及辉光放电微等离子体在大气压下对样品铁取样发射光谱的特性。实现了在开放环境下对高熔点金属样品的在线检测,并发现电弧放电微等离子体与光谱分析源联用具有更高的取样效率。高采样效率的电弧放电微等离子体源为实现金属及难解离样品的检测提供了一种新的方法。同时,相较于传统的取样装置,避免了复杂的样品制备、样品传输过程。实验装置采取简单的针对板放电结构,分别利用高压脉冲电源、直流电源获得电弧放电和辉光放电。实验的结果表明,在放电功率近似相等的条件下,电弧放电产生的微等离子体对样品铁取样的光学发射谱中,样品元素的特征谱线占据主导地位,同时伴随有空气中氮气的谱线,而且铁离子(FeⅡ)谱线的相对强度显著高于氮气分子谱线的相对强度。而在直流辉光放电中,样品铁原子(FeⅠ)谱线相对强度非常不明显。由此说明,电弧放电产生的微等离子体具有更高的采样效率。放电在样品表面留下的溅射坑也得出了相同的结论。增加辉光放电电流到25 mA,发现样品元素铁的谱线仍然没有明显的增强。同时,也研究了采样间距对两种采样模式的影响。实验结果表明,间距对两种模式的采样光谱没有显著的影响。采用主要成分为铝的合金铝箔进行了上述对比实验,得出相同的结论,即电弧放电微等离子体更适合作为光谱分析源来实现对金属样品的实时快速检测。  相似文献   

13.
钢铁中钒、钛元素的激光诱导击穿光谱定量检测   总被引:1,自引:0,他引:1  
采用激光诱导击穿光谱(LIBS)技术测量钢铁中钒、钛元素的含量。选取V Ⅰ 440.85 nm和Ti Ⅰ 334.19 nm作为定量分析谱线、基体元素谱线Fe Ⅰ 438.35 nm作为内标谱线,分别建立了基本定标法和内定标法的钢铁样品中V和Ti含量的光谱分析定标曲线,并将它们用于检验样品的定量分析。研究表明,V和Ti基本定标曲线的拟合相关系数R2分别为0.987 5和0.990 9,对检验样品中V和Ti元素的测定相对误差最大分别为11.1%和4.0%;而采用内定标法时,V和Ti的拟合相关系数R2分别达到0.995 2和0.992 1,对检测样品中V和Ti元素的测定相对误差均可降低到4.0%以下。结果证明,采用内定标的激光诱导击穿光谱分析方法更适于钢铁样品中钒、钛含量的测定。  相似文献   

14.
采用激光诱导击穿光谱对铁(Fe)合金中的钛元素(Ti)的含量进行测量。实验中激光器在最大能量输出(50 mJ),延时为1 μs时光谱信号的强度值最大。在此条件下,分别使用传统定标法和Fe Ⅰ 438.35 nm及Fe Ⅰ 427.12 nm两条谱线的内标法对铁合金中的Ti进行定量分析。内标法得到的拟合相关系数(r)分别为0.997 8和0.993 9,优于传统法得到的r(0.956 3)。提出了一种双谱线平均内标法,拟合得出r为0.998 4。同时,在浓度为0.063%~1.9%的范围内传统定标法测量的相对误差为23.7%,内标法的相对误差为6.0%,采用平均内标法后相对误差降为3.9%。最后,通过测量的Ti光谱计算了激光能量为50 mJ时所产生的等离子体温度为6 654.3 K,电子密度为1.072×1022 cm-3,并讨论了激光能量与烧蚀产生等离子体温度之间的关系。  相似文献   

15.
铝合金中Fe元素的浓度会影响铝合金的软硬程度,从而影响铝合金器件的工作使用寿命,因此铝合金中Fe的含量检测精度非常重要,开展了空间约束结合支持向量机提高毫秒激光诱导击穿光谱的铝合金中的Fe元素成分检测精度研究.在平板空间约束条件下,毫秒激光诱导铝等离子体光谱出现了光谱增强,并且提高了等离子体辐射光谱稳定性,光谱辐射中的...  相似文献   

16.
采用YJG-Ⅱ激光微区分析仪、组合式多功能光栅光谱仪和CCD数据采集处理系统构成的激光微等离子体光谱分析系统,以国家标准土壤样品(BGW07411)为样品,在Ar,He和不同He-Ar混合的环境气氛下,以Ca Ⅱ 393.367 nm,Ca Ⅱ 396.847 nm为分析线,实验研究了土壤激光微等离子体辐射强度。研究结果表明,He-Ar混合气氛环境等离子体发光时间、辐射强度均好于单一He,Ar环境气氛。当He-Ar混合气体分别为:He 66.7%,Ar 33.3%时,等离子体辐射强度明显增强,并在此条件下研究了辅助电极高度对激光微等离子体辐射强度的影响。当辅助电极高度为3 mm时,激光微等离子体的辐射强度达到最佳。  相似文献   

17.
利用波长为1064 nm,最大能量为500 mJ的 Nd:YAG脉冲激光器对紫铜进行冲击,并且改变激光能量,获得一系列等离子体特征谱线,结果表明:本实验条件下,获得铜原子谱线不完整,只有5条明显激发谱线,分别为:CuⅠ 406.33 nm, CuⅠ 458.69 nm, CuⅠ 521.8 nm, CuⅠ 529.25 nm, CuⅠ 578.2 nm。根据跃迁原理,得出激光不能使铜原子完全受到激发;选取CuⅠ 521.8 nm原子光谱与CuⅠ 578.2 nm的原子光谱谱线线型作为分析对象,发现其展宽线型不同,分别为Lorenz线型与Gauss线型。通过对应线型曲线方程分析得出,同一原子光谱不同波段对应形成光谱展宽机制不同。  相似文献   

18.
液体阴极辉光放电-原子发射光谱是近些年兴起的一种水体金属元素检测技术。该技术具有开放大气环境工作,进样简便,体积小,运行费用低,可同时检测多种金属元素等显著特征。根据之前的研究工作可知,金属元素的浓度不仅与自身的某一条谱线强度有关,而且还与自身其他的谱线或者基体中其他元素的谱线强度有关。为提高该技术的检测能力和精度,降低实验过程中基体效应的影响,以及更加充分地利用光谱信息,采用多元线性回归法对光谱信息进行定量分析。选取Pb Ⅰ 368. 35 nm和Pb Ⅰ 405.78 nm两条特征谱线,建立Pb元素浓度与这两条光谱线强度的二元线性回归方程;相比于标准曲线法,Pb元素的拟合度R2从0.986 5提高到0.998 7,两组Pb测试液的相对误差从34.00%和29.00%降低到14.20%和1.51%。为降低复杂成分中基体效应的影响,建立Na的浓度与Na Ⅰ 589.38 nm,Zn Ⅰ 213.8 nm,PbⅠ405.78 nm和Hβ四条特征谱线强度的四元线性回归方程;拟合度R2从标准曲线法的0.955 8提高到0.995 6,两组Na测试液的相对误差从11.67%和14.71%降低到2.33%和3.57%。以上结果表明:相比于标准曲线法,多元线性回归法可以降低实验过程中基体效应的影响,并且能更加充分地利用光谱信息,能提高拟合度R2,以及降低测量的误差,从而提高液体阴极辉光放电-原子发射光谱定量分析金属元素的精度。  相似文献   

19.
The determination of lead by flame atomic absorption analysis in the presence of Sn and Fe atoms and different matrices such as OH and SO3 was investigated with the objective of understanding the spectral interference processes at the analytical lines 283.31 nm for a wide range of concentration.The radiation trapping factor was interpreted and evaluated assuming Voigt distribution of the atomic and rotational lines in the flame. The radiation trapping factor was increased by increasing the number density (plasma of the absorbing medium is optically thick). In plasma, there is a certain point of equilibrium between the trapping and the escaping of radiation, which is relevant to 50% of absorption.The spectral background interference can cause a variation of the number density at equilibrium point as a result of the degree of overlap with the analytical line.The spectral background interference can be easily avoided by using another resonance absorption line for the analysis. The chemical modification of the matrix is applied to minimize the interference effect. Nitric acid, ammonium nitrate and magnesium nitrate are most commonly recommended as matrix modifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号