首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The fabrication method and the pyroelectric response of a single element infrared sensor based lead zirconate titanate (PZT) particles and polyvinylidene fluoride P(VDF-TrFE) copolymer composite thick film is reported in this paper. A special thermal insulation structure, including polyimide (PI) thermal insulation layer and thermal insulation tanks, was used in this device. The thermal insulation tanks were fabricated by laser micro-etching technique. Voltage responsivity (RV), noise voltage (Vnoise), noise equivalent power (NEP), and detectivity (D*) of the PZT/P(VDF-TrFE) based infrared sensor are 1.2 × 103 V/W, 1.25 × 106 V Hz1/2, 1.1 × 10−9 W and 1.9 × 108 cm Hz1/2 W−1 at 137.3 Hz modulation frequency, respectively. The thermal time constant of the infrared sensor τT was about 15 ms. The results demonstrate that the composite infrared sensor show a high detectivity at high chopper frequency, which is an essential advantage in infrared detectors and some other devices.  相似文献   

2.
The multi-waveband temperature sensor (MWTS) array, in which each super-pixel (2 × 2 pixel cell) operates at four distinct thermal infrared (IR) wavebands is being developed. Using this high spatial resolution, four-band thermal IR band detector array, accurate temperature measurements on the surface of an object can be made without prior knowledge of its exact emissivity. This multi-band detector involves intersubband transition in III–V semiconductor-based quantum layered structures. Each detector stack absorbs photons within the specified wavelength band while allowing the transmission of photons in other spectral bands, thus efficiently permitting multi-band detection. This produces multiple, spectrally resolved images of the scene that are recorded simultaneously in a single snapshot on the FPA. From the multispectral images and calibration information about the system, computational algorithms are used to evaluate the temperature on the surface of a target.  相似文献   

3.
A new asymmetric integral imaging (AII) system for real-time pickup and three-dimensional (3-D) display of far outdoor scenes based on dynamic-pixel-mapping (DPM) is proposed. DPM is a digital process to transform the elemental images captured with a lens array into the perspective-variant object images (POIs) whose structures are matched with those of display lenses, where the orders of pixels in each POI are reversely mapped, and then capture a set of virtual elemental images (EIs) at the specific depth planes from the back-propagated POIs. This DPM enables an asymmetrical use of pickup and display lens arrays, allowing the long-ranged pickup of far outdoor scenes and their resolution-enhanced 3-D reconstruction. Experiments with a pair of pickup and display lens arrays whose pitches and focal lengths are given by 7.5 mm, 30 mm and 1.2 mm, 8 mm, respectively, show that the effective pickup-range and resolution of the proposed system have been increased up to 6 m and 1600×1600 pixels, respectively, from 0.064 m and 480×480 pixels of the conventional systems employing the same pickup and display lens arrays. In addition, experiments with an implemented test bed confirms that the proposed system can provide real-time 3-D images in 25 frames per second.  相似文献   

4.
A detailed investigation on thermal and spectroscopic properties of different Ho3+/Yb3+ concentration ratios in silica-germanate glasses is displayed. According to the measurement of thermal properties, the host glass possesses high transition temperature (585 °C) as well as the large ΔT(155 °C). The 2.0 μm fluorescence can be obtained from all the samples. Maximum stimulated emission cross-section of around 2.0 μm is 0.56 × 10−20 cm2 of Ho3+ as calculated by McCumber theory. Besides, the underlying mechanism is analyzed by means of fluorescence spectra. Thus, desirable thermal properties and spectroscopic characteristics of Ho3+/Yb3+ co-doped silica-germanate glass is a promising material in 2.0 μm emission.  相似文献   

5.
A higher fracture probability appearing in indium antimonide (InSb) infrared focal plane arrays (IRFPAs) subjected to the thermal shock test, restricts its final yield. In light of the proposed equivalent method, where a 32 × 32 array is employed to replace the real 128 × 128 array, a three-dimensional modeling of InSb IRFPAs is developed to explore its deformation rules. To research the damage degree to the mechanical properties of InSb chip from the back surface thinning process, the elastic modulus of InSb chip along the normal direction is lessened. Simulation results show when the out-of-plane elastic modulus of InSb chip is set with 30% of its Young’s modulus, the simulated Z-components of strain distribution agrees well with the top surface deformation features in 128 × 128 InSb IRFPAs fracture photographs, especially with the crack origination sites, the crack distribution and the global square checkerboard buckling pattern. Thus the Z-components of strain are selected to explore the deformation rules in the layered structure of InSb IRFPAs. Analyzing results show the top surface deformation of InSb IRFPAs originates from the thermal mismatch between the silicon readout integrated circuits (ROIC) and the intermediate layer above, made up of the alternating indium bump array and the reticular underfill. After passing through both the intermediate layer and the InSb chip, the deformation amplitude is reduced firstly from 2.23 μm to 0.24 μm, finally to 0.09 μm. Finally, von Mises stress criterion is employed to explain the causes that cracks always appear in the InSb chip.  相似文献   

6.
Graphene oxide (GO) and reduced graphene oxide (CRGO), as a graphene derivatives, possess unique properties and a high aspect ratio, indicating great potential in nanocomposite fields. The present work reports the fabrication of the nanocomposite films by a simple and environmentally friendly process using aqueous solution and optimized time sonication for better exfoliation of the graphene sheets within Poly(Vinyl alcohol) (PVA) as matrix. The films were characterized using high-resolution TEM (HRTEM), X-ray diffraction (XRD), Microtensile testing, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). The TEM images revealed a successfully exfoliation of the GO/CRGO nanosheets. XRD combined with TGA and DSC measurements showed an improvement in the thermal stability and tunable thermal properties. In addition, the Young's modulus and tensile yield strength of the composite films containing 1 wt% GO were obtained to be 4.92 GPa and 66 MPa respectively. These excellent reinforcement effects were achieved by the strong interaction between the components.  相似文献   

7.
The exceedingly fragile nature of thermally grown Au-black coating makes handling and patterning a critical issue. Infrared absorption characteristics of near atmospheric, N2 ambient DC sputtered Au thin films are studied for this purpose. The thin Au films are sputtered at different chamber pressures in Ar and N2/Ar gas ambient from 4.5 to 8.0 mbar and optimized for enhanced infrared absorption. The absorber film sputtered in N2/Ar ambient at 8.0 mbar chamber pressure offers significant absorption of medium to long wave infrared radiations. The micro-patterning of sputtered Au thin film is carried out by using conventional photolithography and metal lift off methods on a prefabricated µ-infrared detector array on Si (1 0 0) substrate. The steady state temperature response of sputtered film has been examined using nondestructive thermal imaging method under external heating of the detector array.  相似文献   

8.
Previous studies have shown that anisotropy in phonon transport exist because of the difference in phonon dispersion relation due to different lattice directions, as observed by a difference in in-plane and cross-plane thermal conductivities. Our current work intends to study the effect of anisotropy scattering on silicon thermal conductivity at 300 K and 400 K. We adopt the Henyey and Greenstein probability density function in our phonon Monte Carlo simulation to investigate the effect of highly forward and backward scattering events. The impact of applying the anisotropy scattering using this approach is discussed in detail. While the forward and backward scattering will increase and decrease thermal conductivity respectively, the extent of the effect is non-linear such that forward scattering has a more obvious effect on thermal conductivity than backward scattering.  相似文献   

9.
The modelling, benchmarking and selection process for non-contact 3D imaging systems relies on the ability to characterise their performance. Characterisation methods that require optically compliant artefacts such as matt white spheres or planes, fail to reveal the performance limitations of a 3D sensor as would be encountered when measuring a real world object with problematic surface finish. This paper reports a method of evaluating the performance of 3D imaging systems on surfaces of arbitrary isotropic surface finish, position and orientation. The method involves capturing point clouds from a set of samples in a range of surface orientations and distances from the sensor. Point clouds are processed to create a single performance chart per surface finish, which shows both if a point is likely to be recovered, and the expected point noise as a function of surface orientation and distance from the sensor. In this paper, the method is demonstrated by utilising a low cost pan-tilt table and an active stereo 3D camera. Its performance is characterised by the fraction and quality of recovered data points on aluminium isotropic surfaces ranging in roughness average (Ra) from 0.09 to 0.46 µm at angles of up to 55° relative to the sensor over a distances from 400 to 800 mm to the scanner. Results from a matt white surface similar to those used in previous characterisation methods contrast drastically with results from even the dullest aluminium sample tested, demonstrating the need to characterise sensors by their limitations, not just best case performance.  相似文献   

10.
The aim of the present study was to define if the athletes may vary their warm-up according to the specific demands of event they are preparing for and that higher-level athletes may differ in their thermal responses than lower-level athletes. Ten top level Polish male decathletes (19.9 ± 3.0 yr, 187.9 ± 4.7 cm, 82.7 ± 6.7 kg) who participated in the study were examined with a thermographic camera. Thermal imaging of each athlete was undertaken three times: at rest before the warm-up began, immediately after the general warm-up, and immediately after the specific warm-up.As significant changes in skin surface temperatures were observed between rest and both general and specific warm-ups (p < 0.001) it seems that athletes are able to vary their warm-up according to the decathlon event. Moving from rest to the general warm-up was characterized by decrease of the body surface temperature within the decathletes as a cohort. Interestingly, correlation was found between decathlon result measured by points and decrease of temperatures after commencing the general or specific warm-up exercises (r = 0.62; p < 0.05). However, the higher-performing competitors were characterized by a higher variability of skin temperatures depending on the event being prepared for.The present findings suggest that in sporting competitions characterized by the need for specificity of warm-up of different muscular segments, thermal imaging can be useful observe thermoregulatory responses. Due to these observed individual thermal reactions to the physical effort of warm-up, the present findings suggest it is possible to individually adapt the warm-up to the needs of both the event being prepared for and the level of athlete.  相似文献   

11.
A portable near-infrared (NIR) CH4 detection sensor based on a distributed feedback (DFB) laser modulated at 1.654 μm is experimentally demonstrated. Intelligent temperature controller with an accuracy of −0.07 to +0.09 °C as well as a scan and modulation module generating saw-wave and cosine-wave signals are developed to drive the DFB laser, and a cost effective lock-in amplifier used to extract the second harmonic signal is integrated. Thorough experiments are carried out to obtain detection performances, including detection range, accuracy, stability and the minimum detection limit (MDL). Measurement results show that the absolute detection error relative to the standard value is less than 7% within the range of 0–100%, and the MDL is estimated to be about 11 ppm under an absorption length of 0.2 m and a noise level of 2 mVpp. Twenty-four hours monitoring on two gas samples (0.1% and 20%) indicates that the absolute errors are less than 7% and 2.5%, respectively, suggesting good long term stability. The sensor reveals competitive characteristics compared with other reported portable or handheld sensors. The developed sensor can also be used for the detection of other gases by adopting other DFB lasers with different center-wavelength using the same hardware and slightly modified software.  相似文献   

12.
For microscopic interference setups like an arrangement for in-line holographic microscopy a partially coherent illumination with volumes of coherence in the micrometer scale is sufficient and helpful. For the sensitive measurement of the area of spatial coherence, we use a 125 × 125 nanohole array with aperture diameters of 530 nm and periodic distances of 4 μm. In contrast to Young's double pinhole, multiple beams interfere with each other and a peak intensity enhancement by more than a factor of 1000 can be reached. From the diameter of interference spots, which are located in the Talbot planes, we determine the diameter of the area of spatial coherence in the range of 5–50 μm. Limitations of this technique are given by the numerical aperture of the used imaging lens (100×/0.75) as well as the periodic distance of the apertures within the array.  相似文献   

13.
The inspection of fast rotating objects with rough surfaces is an important task in the emerging field of process control. However, this is challenging since fast and non-contact inspection techniques with a measurement uncertainty in the nanometer range are often required. We present a novel optical sensor allowing non-incremental interferometric displacement measurement of moving solid state objects with rough surfaces. It features three wavelength coded interference fringe systems which are superposed slightly tilted. The displacement is determined by evaluating the phase shift between the resulting scattered light signals. Experimentally, a measurement uncertainty of 660 nm was obtained. This displacement uncertainty is independent of the lateral object velocity in principle. Due to this unique feature, the sensor can be utilized advantageously for precise displacement and vibration measurements of high speed objects as demonstrated by vibration measurements at a turbo pump shaft rotating with 48 000 rpm.  相似文献   

14.
For infrared imaging systems to achieve wide field of view (FoV), wide operating temperature and low weight, this work designs a wide-FoV athermalized infrared imaging system (AIIS) with a two-element lens. Its principle, design, manufacture, measurement and performance validation are successively discussed. The two-element lens contains four surfaces, where three aspheric surfaces are introduced to reduce optical off-axis aberrations and a cubic surface is introduced to achieve athermalization. The key coding mask containing an aspheric surface and a cubic surface is manufactured by nano-metric machining of ion implanted material (NiIM). Experimental results validate that our wide-FoV wavefront coding AIIS has a full FoV of 26.10° and an operating temperature over –20 °C to +70 °C.  相似文献   

15.
The characteristics of SWIR (1.6–3 μm) 320 × 256 and 1024 × 1024 focal plane arrays (FPA’s) based on n-type In-doped HgCdTe heteroepitaxial layers are reported. The HgCdTe layers were grown by molecular beam epitaxy on silicon substrates with ZnTe and CdTe buffer layers. pn junctions were formed by arsenic ion implantation into HgCdTe film. Reverse current in the temperature range from 210 to 330 K was found to be limited by the diffusion mechanism. At the same time in the temperature range from 140 to 210 K the reverse current was dominated by the thermal generation of charge carriers through deep traps located in the middle of the band gap. At 170 K NETD was less than 40 mK.  相似文献   

16.
In this work, a design study of a three field-of-view (FOV) optical system for 8–12 μm imaging using a 288×4 focal plane array detector is presented. The detector pixel size is 25 μm×28 μm. The f/# of the detector is 1.76. In order to switch the FOVs, three different optical configurations are superimposed and all three configurations are optimized. The narrow and medium FOV switching is based on movement of the second negative lens of the afocal system, whereas the wide FOV is selected by inserting a mirror between the 4th and 5th lenses of the afocal system. By inserting a switching mirror, the objective part of the first configuration is blocked out; nevertheless the afocal of the wide FOV is activated. The imager part of the layout is common for all FOVs. Diffractive and aspheric surfaces are utilized to control chromatic and all other kinds of aberrations, reducing the total lens number. The final optical designs, together with their modulation transfer function (MTF) plots, are illustrated, exhibiting excellent performance in all three FOVs. More specifically, the paper emphasizes how the displacement of compensating lenses effect the MTF of the system and how automatic movements of the lenses are used to eliminate the defocusing problem under changing environmental conditions.  相似文献   

17.
This work presents a unique method for fabricating aspheric micro-lens array based on a KrF 248 nm excimer laser micromachining with precise surface profile control. Based on a planetary contour scanning laser machining method along with a shading metal mask and sample movable stage, an array of micro-lenses with precisely controlled surface profiles can be fabricated. Each lens surface profile can be aspheric and pre-designed. Experiments have been carried out and the machining accuracy of each lens surface profile is examined. Good surface roughness and profile accuracy are observed.  相似文献   

18.
Thermography for scientific research and practical purposes requires a series of procedures to obtain images that should be standardized; one of the most important is the time required for acclimatization in the controlled environment. Thus, the objective of this study was to identify the appropriate acclimatization time in rest to reach a thermal balance on young people skin. Forty-four subjects participated in the study, 18 men (22.3 ± 3.1 years) and 26 women (21.7 ± 2.5 years). Thermographic images were collected using a thermal imager (Fluke®), totaling 44 images over a period of 20 min. The skin temperature (TSK) was measured at the point of examination which included the 0 min, 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20. The body regions of interest (ROI) analyzed included the hands, forearms, arms, thighs, legs, chest and abdomen. We used the Friedman test with post hoc Dunn’s in order to establish the time at rest required to obtain a TSK balance and the Mann–Whitney test was used to compare age, BMI, body fat percentage and temperature variations between men and women, considering always a significance level of p < 0.05. Results showed that women had significantly higher temperature variations than men (p < 0.01) along the time. In men, only the body region of the abdomen obtained a significant variance (p < 0.05) on the analyzed period, both in the anterior and posterior part. In women, the anterior abdomen and thighs, and the posterior part of the hands, forearms and abdomen showed significant differences (p < 0.05). Based on our results, it can be concluded that the time in rest condition required reaching a TSK balance in young men and women is variable, but for whole body analysis it is recommended at least 10 min for both sexes.  相似文献   

19.
Treatment and management of food processing waste is a major challenge for food industry. Potato processing industry generates tremendous amount of peel and consider it as zero valued waste. Again, pomace generated after juice extraction from sweet lime pulp is considered as waste and not properly utilized. Whereas these waste could be utilized for the development of biodegradable packaging film to overcome environmental issues. Composite films were prepared with varying proportion of potato peel powder (PP) and sweet lime pomace (SLP) in the ratio of 0:1(A), 0.5:1(B), 1:1(C), 1:0.5(D), 1:0(E) with an ultrasound treatment of 45 min, and 0:1(F), 0.5:1(G), 1:1(H), 1:0.5(I), 1:0(J) with an ultrasound treatment of 60 min. Ultrasound was applied for 45 and 60 min to film forming solutions to break down biopolymer particles small enough to form a film. All the films were analyzed for their barrier and mechanical properties. It was observed that increasing ultrasound treatment times gives better result in film properties and less PP content also gives better film properties, from these observations film G prepared with 0.5:1 (PP:SLP) showed better characteristics among all other films. Water vapor permeability, moisture absorption, water solubility, breakage strength and elongation capacity of G film were reported as 7.25 × 10−9 g/Pa h m, 12.88 ± 0.348%, 38.92 ± 0.702%, 242.01 ± 3.074 g and 7.61 ± 0.824 mm respectively. However, thermal decomposition for film G took place above 200 °C. The film forming solution of selected G film, added with clove essential oil (1.5%) as an antimicrobial agent was wrapped on bread and stored it for 5 days. The film was successful in lowering the weight loss, reducing the hardness and inhibition of surface microbial load from bread sample.  相似文献   

20.
A fast and easy method for fault detection in antenna arrays using infrared thermography is presented. A thin, minimally perturbing, microwave absorption screen made of carbon loaded polymer is kept close in front of the faulty array. Electromagnetic waves falling on the screen increase its temperature. This temperature profile on the screen is identical to electric field intensity profile at the screen location. There is no temperature rise observed on the screen corresponding to non-radiating (faulty) elements and hence can be easily detected by IR thermography. The array input power is modulated at a low frequency which permits thermography to detect even weak fields. It also improves the resolution of thermal images. The power fed to the array is only 30 dBm. In order to show the utility of this technique, an example of 14 GHz 4 × 4 patch antenna array is given. The simulations are carried in CST Microwave Studio 2013. A good agreement between simulation and experimental results is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号