首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
(K0.5Na0.5)NbO3 (KNN)/[P(VDF-TrFE)70:30] composite thick films with different KNN weight ratios have been fabricated and the effect of KNN mass content on the material structure and properties have been studied in this paper. Properties of the infrared sensor based KNN/[P(VDF-TrFE)70:30] composite thick film were also systematically studied. It was found that the sample containing 30 wt.% KNN show optimal properties for pyroelectric appliance and the highest pyroelectric coefficient was 63 μCm−2 K−1. Infrared sensors using 30 wt.% KNN-70 wt.%[P(VDF-TrFE)70:30] show highest detectivity (D1 = 3.21 × 108 cm Hz1/2 W−1) at 137.3 Hz, indicating it is an promising candidate in lead-free quick response infrared detectors.  相似文献   

2.
In this paper, we presented a new pyroelectric detector with back to back silicon cups and micro-bridge structure. The PZT thick film shaped in the front cup was directly deposited with designed pattern by electrophoresis deposition (EPD). Pt/Ti Metal film, which was fabricated by standard photolithography and lift-off technology, was sputtered to connect the top electrode and the bonding pad. The cold isostatic press (CIP) treatment could be applied to improve the pyroelectric properties of PZT thick film. The infrared (IR) properties the CIP-optimized detector were measured. The voltage responsivity (RV) was 4.5 × 102 V/W at 5.3 Hz, the specific detectivity (D*) was greater than 6.34 × 108 cm Hz1/2 W−1 (frequency > 110 Hz), and the thermal time constant was 51 ms, respectively.  相似文献   

3.
Porous lead zirconate titanate (PbZr0.3Ti0.7O3, PZT30/70) thick films and detectors for pyroelectric applications have been fabricated on alumina substrates by screen-printing technology. Low temperature sintering of PZT thick films have been achieved at 850 °C by using Li2CO3 and Bi2O3 sintering aids. The microstructure of PZT thick film has been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dielectric properties were measured using HP 4284 at 1 kHz under 25 °C. The permittivity and loss tangent of the thick films were 94 and 0.017, respectively. Curie temperature of PZT thick film was 425 °C as revealed by dielectric constant temperature measurement. The pyroelectric coefficient was determined to be 0.9 × 10−8 Ccm−2 K−1 by dynamic current measurement. Infrared detector sensitive element of dual capacitance was fabricated by laser directly write technology. Detectivity of the detectors were measured using mechanically chopped blackbody radiation. Detectivity ranging from 1.23 × 108 to 1.75 × 108 (cm Hz1/2 W−1) was derived at frequency range from 175.5 Hz to 1367 Hz, and D*’s −3 dB cut-off frequency bandwidth was 1.2 kHz. The results indicate that the infrared detectors based on porous thick films have great potential applications in fast and wide-band frequency response conditions.  相似文献   

4.
InP-based InGaAsP photodetectors targeting on 1.06 μm wavelength detection have been grown by gas source molecular beam epitaxy and demonstrated. For the detector with 200 μm mesa diameter, the dark current at 10 mV reverse bias and R0A are 8.89 pA (2.2 × 10−8 A/cm2) and 3.9 × 105 Ω cm2 at room temperature. The responsivity and detectivity of the InGaAsP detector are 0.30 A/W and 1.45 × 1012 cm Hz1/2 W−1 at 1.06 μm wavelength. Comparing to the reference In0.53Ga0.47As detector, the dark current of this InGaAsP detector is about 570 times lower and the detectivity is more than ten times higher, which agrees well with the theoretical estimation.  相似文献   

5.
In this paper, a mid-/long-wave dual-band detector which combined PπMN structure and unipolar barrier was developed based on type-II InAs/GaSb superlattice. A relevant 320 × 256 focal plane array (FPA) was fabricated. Unipolar barrier and PπMN structure in our dual band detector structure were used to suppress cross-talk and dark current, respectively. The two channels, with respective 50% cut-off wavelength at 4.5 μm and 10 μm were obtained. The peak quantum efficiency (QE) of mid wavelength infrared (MWIR) band and long wavelength infrared (LWIR) band are 53% at 3.2 μm under no bias voltage and 40% at 6.4 μm under bias voltage of −170 mV, respectively. And the dark current density under 0 and −170 mV of applied bias are 1.076 × 10−5 A/cm2 and 2.16 × 10−4 A/cm2. The specific detectivity of MWIR band and LWIR band are 2.15 × 1012 cm·Hz1/2/W at 3.2 μm and 2.31 × 1010 cm·Hz1/2/W at 6.4 μm, respectively, at 77 K. The specific detectivity of LWIR band maintains above 1010 cm·Hz1/2/W at the wavelength range from 4.3 μm to 10.2 μm under −170 mV. The cross-talk, selectivity parameter at 3.0 μm, about 0.14 was achieved under bias of −170 mV. Finally, the thermal images were taken by the fabricated FPA at 77 K.  相似文献   

6.
In this paper, we present an InAs/GaSb type-II superlattice (SL) with the M-structure for the fabrication of a long-wavelength (10 μm range) infrared (LWIR) focal plane arrays (FPA), which are grown by molecular beam epitaxy (MBE). The M-structure is named for the shape of the band alignment while the AlSb layer is inserted into the GaSb layer of InAs/GaSb SL. A 320 × 256 LWIR FPA has been fabricated with low surface leakage and high R0A product of FPA pixels by using anodic sulfide and SiO2 physical passivation. Experiment results show that the devices passivated with anodic sulfide obviously have higher R0A than the un-sulphurized one. The 50% cutoff wavelength of the LWIR FPA is 9.1 μm, and the R0A is 224 Ω cm2 with the average detectivity of 2.3 × 1010 cm Hz1/2 W−1.  相似文献   

7.
《Current Applied Physics》2010,10(3):900-903
The fabrication and characterization of an organic photodetector (OPD) in the form of ITO coated glass/polycarbazole (PCz)/Al Schottky contact is reported. The device has been fabricated in our laboratory for the first time using the polymer synthesized by us. The device has been subsequently characterized in respect of electrical and optical properties in order to explore its potential for possible use as a detector in the visible region at 650 nm. It is observed that the detector exhibits a reasonably high value of peak detectivity (∼6 × 106 cm Hz1/2 W−1) near zero bias voltage at V = 0.2 V.  相似文献   

8.
The dielectric and pyroelectric responses of MgO-modified Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ceramics were investigated near FR(LT)–FR(HT) phase transition. It was found that MgO additive reduced the FR(LT)–FR(HT) phase transition temperature from 41 °C to room temperature (24 °C). Superior room-temperature pyroelectric properties were obtained in the composition of 0.10 wt% MgO addition without DC bias. The largest pyroelectric coefficient, 65 × 10−8 C cm−2 K−1, was detected. Accordingly, the detectivity figures of merit Fd had maximum values of 20 × 10−5 Pa−1/2, and especially the voltage responsivity Fv = 0.91 m2C−1 is the highest value reported so far among all pyroelectric materials. It shows promising potential for application in uncooled pyroelectric infrared detector.  相似文献   

9.
Uncooled infrared detectors (IR) on a polyimide substrate have been demonstrated where amorphous silicon (a-Si) was used as the thermometer material. New concepts in uncooled microbolometers were implemented during the design and fabrication, such as the integration of a germanium long-pass optical filter with the device-level vacuum package and a double layer absorber structure. Polyimide was used for this preliminary work towards vacuum-packaged flexible microbolometers. The detectors were fabricated utilizing a carrier wafer and low adhesion strength release layer to hold the flexible polyimide substrate during fabrication in order to increase the release yield. The IR detectors showed a maximum detectivity of 4.54 × 106 cm Hz1/2/W at a 4 Hz chopper frequency and a minimum noise equivalent power (NEP) of 7.72 × 10−10 W/Hz1/2 at a biasing power of 5.71 pW measured over the infrared wavelength range of 8–14 μm for a 35 μm × 35 μm detector. These values are comparable to other flexible microbolometers with device-level vacuum packaging which are found in literature.  相似文献   

10.
The effects of TiOx diffusion barrier layer thickness on the microstructure and pyroelectric characteristics of PZT thick films were studied in this paper. The TiOx layer was prepared by thermal oxidation of Ti thin film in air and the PZT thick films were fabricated by electrophoresis deposition method (EPD). To demonstrate the barrier effect of TiOx layer, the electrode/substrate interface and Si content in PZT thick films were characterized by scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS), respectively. The TiOx barrier thickness shows significant influence on the bottom electrode and the pyroelectric performance of the PZT thick films. The average pyroelectric coefficient of PZT films deposited on 400 nm TiOx layer was about 8.94 × 10−9 C/(cm2 K), which was improved by 70% than those without diffusion barrier layer. The results showed in this study indicate that TiOx barrier layer has great potential in fabrication of PZT pyroelectric device.  相似文献   

11.
Results of modeled photodetector characteristics in (CdS/ZnSe)/BeTe multi-well diode with p–i–n polarity are reported. The dark current density (JV) characteristics, the temperature dependence of zero-bias resistance area product (R0A), the dynamic resistance as well as bias dependent dynamic resistance (Rd) and have been analyzed to investigate the mechanisms limiting the electrical performance of the modeled photodetectors. The quantum efficiency, the responsivity and the detectivity have been also studied as function of the operating wavelength. The suitability of the modeled photodetector is demonstrated by its feasibility of achieving good device performance near room temperature operating at 1.55 μm wavelength required for photodetection in optical communication. Quantum efficiency of ∼95%, responsivity ∼0.6 A/W and D*  5.7 × 1010 cm Hz1/2/W have been achieved at 300 K in X BeTe conduction band minimum.  相似文献   

12.
We have investigated the electrical and optical properties of an nBn based Type-II InAs/GaSb strained layer superlattice detector as a function of absorber region background carrier concentration. Temperature-dependent dark current, responsivity and detectivity were measured. At T = 77 K and Vb = 0.1 V, with two orders of magnitude change in doping concentration, the dark current density increased from ~0.3 mA/cm2 to ~0.3 A/cm2. We attribute this to a depletion region that exists at the AlGaSb barrier and the SLS absorber interface. The device with non-intentionally doped absorption region demonstrated the lowest dark current density (0.3 mA/cm2 at 0.1 V) with a specific detectivity D1 at zero bias equal to 1.2 × 1011 Jones at 77 K. The D1 value decreased to 6 × 1010 cm Hz1/2/W at 150 K. This temperature dependence is significantly different from conventional PIN diodes, in which the D1 decreases by over two orders of magnitude from 77 K to 150 K, making nBn devices a promising alternative for higher operating temperatures.  相似文献   

13.
《Current Applied Physics》2009,9(5):1129-1133
Measurements of In2S3 and ZnIn2S4 sprayed thin films thermal characteristics have been carried out using the photodetection technique. The thermal conductivity k and diffusivity D were obtained using a new protocol based on photothermal signal parameters analysis. Measured values of k and D were respectively, (15.2 ± 0.85) W m−1K−1 and (69.8 ± 7.1) × 10−6 m2s−1 for In2S3, (7.2 ± 0.7) W m−1K−1 and (32.7 ± 4.3) × 10−6 m2s−1 for ZnIn2S4. These values are extremely important since similar compounds are more and more proposed as Cd-free alternative materials for solar cells buffer layers.  相似文献   

14.
《Applied Surface Science》2005,239(3-4):481-489
The current–voltage (IV) characteristics of Al/SnO2/p-Si (MIS) Schottky diodes prepared by means of spray deposition method have been measured at 80, 295 and 350 K. In order to interpret the experimentally observed non-ideal Al/SnO2/p-Si Schottky diode parameters such as, the series resistance Rs, barrier height ΦB and ideality factor n, a novel calculation method has been reported by taking into account the applied voltage drop across interfacial oxide layer Vi and ideality factor n in the current transport mechanism. The values obtained for Vi were subtracted from the applied voltage values V and then the values of Rs were recalculated. The parameters obtained by accounting for the voltage drop Vi have been compared with those obtained without considering the above voltage drop. It is shown that the values of Rs estimated from Cheung’s method were strongly temperature-dependent and decreased with increasing temperature. It is shown that the voltage drop across the interfacial layer will increase the ideality factor and the voltage dependence of the IV characteristics. The interface state density Nss of the diodes has an exponential growth with bias towards the top of the valance band for each temperature; for example, from 2.37 × 1013 eV−1 cm−2 in 0.70−Ev eV to 7.47 × 1013 eV−1 cm−2 in 0.62−Ev eV for 295 K. The mean Nss estimated from the IV measurements decreased with increasing the temperature from 8.29 × 1013 to 2.20 × 1013 eV−1 cm−2.  相似文献   

15.
《Solid State Ionics》2006,177(19-25):1747-1752
Oxygen tracer diffusion coefficient (D) and surface exchange coefficient (k) have been measured for (La0.75Sr0.25)0.95Cr0.5Mn0.5O3−δ using isotopic exchange and depth profiling by secondary ion mass spectrometry technique as a function of temperature (700–1000 °C) in dry oxygen and in a water vapour-forming gas mixture. The typical values of D under oxidising and reducing conditions at ∼ 1000 °C are 4 × 10 10 cm2 s 1 and 3 × 10 8 cm2 s 1 respectively, whereas the values of k under oxidising and reducing conditions at ∼ 1000 °C are 5 × 10 8 cm s 1 and 4 × 10 8 cm s 1 respectively. The apparent activation energies for D in oxidising and reducing conditions are 0.8 eV and 1.9 eV respectively.  相似文献   

16.
In this paper we report on the growth of mid-wavelength infrared superlattice materials by molecular beam epitaxy. We focused on the effects of process parameters, such as arsenic beam equivalent pressure and shutter sequences, on the key material properties, such as the lattice mismatch and the surface morphology. Though a smaller As beam equivalent pressure helps to reduce the lattice mismatch between the superlattice and the GaSb substrate, the As beam equivalent pressure itself has a lower limit below which the material’s surface morphology will degrade. To achieve fully lattice-matched superlattice materials, a novel shutter sequence in the growth process was designed. With well-designed interface structures, a high quality P-I-N superlattice mid-infrared detector structure was realized. At 77 K the dark current density at −50 mV bias was 2.4 × 10−8 A/cm2 and the resistance-area product (RA) at maximum (−50 mV bias) was 2.4 × 106 Ω cm2, and the peak detectivity was then calculated to be 9.0 × 1012 cm Hz1/2/W. The background limited infrared photodetector (BLIP) level can be achieved at a temperature of 113 K.  相似文献   

17.
The equilibrated grain boundary groove shapes for solid carbon tetrabromide (CTB) in equilibrium with its melt were directly observed by using a horizontal temperature gradient stage. From the observed grain boundary groove shapes, Gibbs–Thomson coefficient (Γ) and solid–liquid interfacial energy (σSL) and grain boundary energy (σgb) of CTB have been determined to be (7.88 ± 0.8) × 10−8 K m, (6.91 ± 1.04) × 10−3 J m−2 and (13.43 ± 2.28) × 10−3 J m−2, respectively. The ratio of thermal conductivity of equilibrated liquid phase to solid phase for CTB has also been measured to be 0.90 at its melting temperature. The value of σSL for CTB obtained in present work was compared with the values of σSL determined in the previous works for same material and it was seen that the present result is in good agreement with previous works.  相似文献   

18.
《Solid State Ionics》2006,177(19-25):1795-1798
Oxygen deficiency, thermal and chemical expansion of La0.5Sr0.5Fe1−xCoxO3−δ (x = 0, 0.5, 1) have been measured by thermogravimetry, dilatometry and high temperature X-ray diffraction. The rhombohedral perovskite materials transformed to a cubic structure at 350 ± 50 °C. The thermal expansion of the materials up to the onset of thermal reduction was 14–18 × 10 6 K 1. Above 500 °C in air (400 °C in N2), chemical expansion contributed to the thermal expansion and the linear thermal expansion coefficients were significantly higher, 16–35 × 10 6 K 1. The chemical expansion, εc, showed a maximum of 0.0045 for x = 0.5 and 0.0041 for x = 1 at 800–900 °C. The normalized chemical expansion, εcδ, was 0.036 for x = 0.5 and 0.035 for x = 1 at 800 °C. The chemical expansion can be correlated with an increasing ionic radius of the transition metals with decreasing valence state.  相似文献   

19.
We report a sensitive photodetector, based on a manganite junction La2/3Ca1/3MnO3/Si, for femtosecond (fs) pulse laser energy per pulse and average power measurements. The La2/3Ca1/3MnO3/Si photodetector exhibits D? (normalized detectivity) greater than 5.229×109 cm Hz1/2 W?1. The open-circuit photovoltage and short-circuit photocurrent responsivities reach ~268 V/mJ and ~275 A/mJ for single pulse irradiation, respectively, and the open-circuit photovoltage responsivity reaches ~1.7 V/W for average power illumination. The experimental results make the manganite junction a promising fs laser measurement detector and reference standard for calibrating fs lasers.  相似文献   

20.
《Solid State Ionics》2006,177(1-2):73-76
Ionic conduction in fluorite-type structure oxide ceramics Ce0.8M0.2O2−δ (M = La, Y, Gd, Sm) at temperature 400–800 °C was systematically studied under wet hydrogen/dry nitrogen atmosphere. On the sintered complex oxides as solid electrolyte, ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in the solid states proton conducting cell reactor by electrochemical methods, which directly evidenced the protonic conduction in those oxides at intermediate temperature. The rate of evolution of ammonia in Ce0.8M0.2O2−δ (M = La, Y, Gd, Sm) is up to 7.2 × 10 9, 7.5 × 10 9, 7.7 × 10 9, 8.2 × 10 9 mol s 1 cm 2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号