首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the present study was to compare infrared thermography and thermal contact sensors for measuring skin temperature during cycling in a moderate environment. Fourteen cyclists performed a 45-min cycling test at 50% of peak power output. Skin temperatures were simultaneously recorded by infrared thermography and thermal contact sensors before and immediately after cycling activity as well as after 10 min cooling-down, representing different skin wetness and blood perfusion states. Additionally, surface temperature during well controlled dry and wet heat exchange (avoiding thermoregulatory responses) using a hot plate system was assessed by infrared thermography and thermal contact sensors. In human trials, the inter-method correlation coefficient was high when measured before cycling (r = 0.92) whereas it was reduced immediately after the cycling (r = 0.82) and after the cooling-down phase (r = 0.59). Immediately after cycling, infrared thermography provided lower temperature values than thermal contact sensors whereas it presented higher temperatures after the cooling-down phase. Comparable results as in human trials were observed for hot plate tests in dry and wet states. Results support the application of infrared thermography for measuring skin temperature in exercise scenarios where perspiration does not form a water film.  相似文献   

2.
The effect of the input electrical power on the spectral width of the 510.6 nm line of an atomic copper vapor laser (CVL) is investigated. An analysis of the gas temperature inside the discharge tube and the line broadening mechanism of the CVL is reported. The input electrical power was varied from 2.0 to 4.2 kW in a cylindrical discharge tube of inner radius 2.35 cm and length 150.0 cm. A Fabry–Perot etalon and imaging camera-based setup interfaced with personal computer was used to measure the spectral width of the 510.6 nm (green) laser line. The Doppler broadened spectral profile of the laser emission varies with input electrical power and an additional broadening of almost 1 GHz at the highest operating input power was observed.  相似文献   

3.
A LuAG shaped rod crystal, doped with Yb3+, has been grown by μ-PD technique. The crystal diameter was about 3 mm and the length around 130 mm. A complete spectroscopic investigation in the temperature range 10–300 K is reported and data has been utilized to model the laser behavior. In the laser experiment the Yb:LuAG sample was placed in an X cavity and pumped longitudinally obtaining an efficient CW laser emission. The Yb:LuAG laser yielded a maximum output power of 23 mW with a slope efficiency of 32% and a threshold around 35 mW, at lasing wavelength of 1030 nm. No significant depolarization effects were observed, indicating a crystal growth with negligible stress. The output beam profile was investigated, yielding M2  1.0 in both directions, further confirming the good optical quality of the sample.  相似文献   

4.
Using scanning tunneling microscopy observations and density functional theory calculations, regularities of the Al magic cluster array self-assembly on Si(1 0 0) surface has been elucidated. While a single Al cluster occupies an area of 4a × 3a, an ordered Al-cluster array exhibits a 4 × 5 periodicity, as the clusters in the array are separated by the 4a × 2a “spacers”. The plausible structural model for the “spacer” was proposed in which the “spacer” is arranged as an ordinary 4a × 3a-Al cluster in which the central atomic row with the topmost Si atom is missing. Appearance of the “spacers” in the Al-cluster array was found to reduce formation energy of the array. Ability to incorporate the rows of Al-“spacers” into the completed 4 × 3 In-cluster array was demonstrated.  相似文献   

5.
This paper proposes a solution to the excessive area penalty associated with traditional buffer direct injection (BDI) for single pixel. The proposed solution reduces the area and power consumption of BDI to combine the direct injection (DI) within a shared architecture, while a dual-mode readout circuit expands the functionality and performance of the array readout circuit of infrared sensor. An experimental array of 10 × 8 readout circuits was fabricated using TSMC 2P4M 0.35 μm 5 V technology. Measurements were obtained using a main clock with a frequency of 3 MHz and power consumption of 9.94 mW. The minimum input current was 119 pA in BDI and 1.85 pA in DI. The signal swing was 2 V, the root mean square noise voltage was 1.84 mV, and the signal-to-noise ratio was 60 dB. This approach is applicable to mid- and long-band sensors to increase injection efficiency and resolution.  相似文献   

6.
Non-contact temperature measurement in a nuclear reactor is still a huge challenge because of the numerous constraints to consider, such as the high temperature, the steam atmosphere, and irradiation. A device is currently developed at CEA to study the nuclear fuel claddings behavior during a Loss-of-Coolant Accident. As a first step of development, we designed and tested an optical pyrometry procedure to measure the surface temperature of nuclear fuel claddings without any contact, under air, in the temperature range 700–850 °C. The temperature of Zircaloy-4 cladding samples was retrieved at various temperature levels. We used Multispectral Radiation Thermometry with the hypothesis of a constant emissivity profile in the spectral ranges 1–1.3 µm and 1.45–1.6 µm. To allow for comparisons, a reference temperature was provided by a thermocouple welded on the cladding surface. Because of thermal losses induced by the presence of the thermocouple, a heat transfer simulation was also performed to estimate the bias. We found a good agreement between the pyrometry measurement and the temperature reference, validating the constant emissivity profile hypothesis used in the MRT estimation. The expanded measurement uncertainty (k = 2) of the temperature obtained by the pyrometry method was ±4 °C, for temperatures between 700 and 850 °C. Emissivity values, between 0.86 and 0.91 were obtained.  相似文献   

7.
The objective of this study was to investigate the efficacy of high intensity ultrasound on the fermentation profile of Lactobacillus sakei in a meat model system. Ultrasound power level (0–68.5 W) and sonication time (0–9 min) at 20 °C were assessed against the growth of L. sakei using a Microplate reader over a period of 24 h. The L. sakei growth data showed a good fit with the Gompertz model (R2 > 0.90; SE < 0.042). Second order polynomial models demonstrated the effect of ultrasonic power and sonication time on the specific growth rate (SGR, μ, h−1) and lag phase (λ, h). A higher SGR and a shorter lag phase were observed at low power (2.99 W for 5 min) compared to control. Conversely, a decrease (p < 0.05) in SGR with an increase in lag phase was observed with an increase in ultrasonic power level. Cell-free extracts obtained after 24 h fermentation of ultrasound treated samples showed antimicrobial activity against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella typhimurium at lower concentrations compared to control. No significant difference (p < 0.05) among treatments was observed for lactic acid content after a 24 h fermentation period. This study showed that both stimulation and retardation of L. sakei is possible, depending on the ultrasonic power and sonication time employed. Hence, fermentation process involving probiotics to develop functional food products can be tailored by selection of ultrasound processing parameters.  相似文献   

8.
Infrared thermography is used for evaluation of the mean temperature as a measure of thermal load during corneal refractive surgery. An experimental method to determine emissivity and to calibrate the thermografic system is presented. In a case study on the porcine eye two dimensional temperature distributions with lateral resolution of 170 μm and line scans with temporal resolution of 13 μs are discussed with respect to the meaning of mean temperature. Using the newest generation of surgery equipment it is shown, that the mean temperature rise can be kept below 5 °C during myopic laser in situ keratomileusis (LASIK) treatments corresponding to an aberration-free correction of ?2.75 diopter.  相似文献   

9.
An LD end-pumped Nd:YAG/SrWO4 continuous-wave 560 nm laser is presented based on intracavity sum-frequency mixing of the fundamental and first-Strokes light. The maximum output power of 330 mW at 559.6 nm was obtained for the diode pump power of 13.7 W and the conversion efficiency was about 2.5%. The intense blue emission was also observed in the SrWO4 crystal when the Raman laser was operating above threshold. This blue emission is centered at 473 nm, which also happened to YVO4.  相似文献   

10.
An investigation on SiC coated carbon–carbon (C/C) composite plates has been undertaken by pulsed thermography. The heat transfer model has been built and the finite element method (FEM) is applied to solve the thermal model. The simulation results show that defects with DA/DP smaller than one can hardly be detected by an infrared camera with the sensitivity of 0.02 °C. Certificated experiments were performed on the built pulsed thermography system. The thermal wave signals have been processed by subtracting background image method (SBIM), pulsed phase thermography (PPT), and temperature–time logarithm fitting method (TtLFM). The limit DA/DP of defects in SiC coated C/C composite plates with the thickness of 6 mm that can be detected by pulsed thermography with the presented signal analysis algorithms has been obtained.  相似文献   

11.
We demonstrate room-temperature operation of broad-area edge-emitting photonic-crystal distributed-feedback quantum cascade lasers at λ  4.6 μm. The lasers use a weak-index perturbed third-order photonic-crystal lattice to control the optical mode in the wafer plane. Utilizing this coupling mechanism, the near-diffraction-limited beam quality with a far-field profile normal to the facet can be obtained. Single-mode operation with a signal-to-noise ratio of about 20 dB is achieved in the temperature range of 85–290 K. The single-facet output power is above 1 W for a 55 μm × 2.5 mm laser bar at 85 K in pulsed mode.  相似文献   

12.
Antenna-coupled nanothermocouples (ACNTC) for infrared detection have been widely studied. It has been shown that dipole antennas receive incident infrared radiation, and radiation-induced antenna currents heat the hot junction of the nanothermocouple, thus producing an electrical potential by the Seebeck effect. We have already demonstrated small thermopiles constructed from the series connection of ACNTCs. Here we study the infrared response of large-scale (N > 500) nanoantenna arrays constructed from ACNTCs, where the antennas are spaced over a range of 25–300% of the incident wavelength. COMSOL simulations show temperature oscillations, and both simulations and experiments show corresponding open-circuit voltage oscillations as a function of antenna spacing. When the distance between the antennas is less than 2λ, constructive and deconstructive interference leads to an enhancement or attenuation of the antenna currents. Our simulations and experimental results are in excellent agreement, and show that the open-circuit voltage response of the array depends on the inter-column distance of the array and the separation between the hot and cold junctions. Furthermore, we report polarization- and array-size-dependent measurements to confirm that the responses of the arrays are the result of the heating of the hot junction by the radiation-induced antenna currents.  相似文献   

13.
A microstrip patch antenna is designed using a very thin layer of graphene as the radiating patch, which is fed by a microstrip transmission line. The graphene based patch is designed on a silicon substrate having a dielectric constant of 11.9, to radiate at a single frequency of 2.6 THz. Further, this antenna is made to resonate at dual frequencies of 2.48 THz and 3.35 THz, by changing the substrate height, which is reported for the first time. Various antenna parameters such as return loss, VSWR, gain, efficiency and bandwidth are also determined for the single and dual band operation. For the single band operation, a bandwidth of 145.4 GHz and an efficiency of 92% was achieved. For dual band operation, a maximum bandwidth of 140.5 GHz was obtained at 3.35 THz and an efficiency of 87.3% was obtained at the first resonant frequency of 2.48 THz. The absorption cross section of the antenna is also analysed for various substrate heights and has maximum peaks at the corresponding resonating frequencies. The simulation has been carried out by using a full wave electromagnetic simulator based on FDTD method.  相似文献   

14.
In this paper we have developed and evaluated a spherical phased array ultrasound applicator for deep tissue ablation. The 90-element prototype array has a 21 cm aperture and an 18 cm radius of curvature with a 5 cm wide central hole. Annular distribution with circular elements is used to reduce the number of elements. The array is constructed with piezoelectric (PZT-8) circular planar elements that are 1.4 cm in diameter and 0.2-cm thick. With the water-muscle propagation path, the array offers an effective beam focusing depth of at least 8 cm in the muscle layer. Simulation results show that the array provides good beam focusing and steering capability over a cylindrical volume of approximately π × 1 × 1 × 4 cm3 (up to 10 mm off center over ranges from 15 cm to 19 cm). We also present its beam focusing and steering capability in deep tissue through a series of ex vivo experiments by measuring discoloration areas after sonications. The ex vivo experiments show a similar focal range as that found in the simulations.  相似文献   

15.
W.X. Lan  Q.P. Wang  Z.J. Liu  X.Y. Zhang  F. Bai  H.B. Shen  L. Gao 《Optik》2013,124(24):6866-6868
A diode end-pumped passively Q-switched Nd:YAG/KTA intracavity Raman laser is presented. A KTA crystal with a size of 5 mm × 5 mm × 25 mm is used as the Raman active medium and its 234 cm?1 Raman mode is employed to finish the conversion from 1064 nm fundamental laser to 1091 nm Raman laser. A 2 mm thick Cr4+:YAG crystal is used as the saturable absorber. With an LD pump power of 7.5 W, the first-Stokes power of 250 mW is obtained with a pulse repetition frequency of 14.5 kHz. The corresponding diode-to-Stokes conversion efficiency is 3.3% and the pulse energy is 17.2 μJ. Pulse width is measured to be 12.6 ns and peak power is 1.4 kW.  相似文献   

16.
The temperature dependence of the magnetic susceptibility of 6–8 ML Ni/W(1 1 0) is measured in situ in UHV by means of an AC-susceptibility mutual inductance bridge. At sufficient small driving magnetic fields ⩽11 A/m a susceptibility maximum and an interval of constant susceptibility on the high temperature side of the peak are observed. The Curie temperature is identified as the low temperature limit of this region of constant susceptibility. The appearance of the maximum at lower temperatures is interpreted as a ferro-magnetic response at T<TC. The critical exponent γ is extracted from a power law fit at T>TC. For the smallest field of 3 A/m, the determined γ of 1.26 (7) is consistent with γ of the three-dimensional Ising model. For larger fields, the exponent depends on the field and presents an effective value.  相似文献   

17.
To improve the response performance of superconducting infrared detectors, we propose using a photonic antenna with a micro-detector in conjunction with a nano-structure. In this paper, we report evaluation results that show the basic characteristics of a photonic antenna in the mid-infrared region. The antenna consists of a nano-slot antenna and a thin-film load resistance placed in the center of the antenna. The antennas were designed for operation at approximately several tens of THz by using an electromagnetic simulator. Through measurements of the spectral reflectance characteristics, clear absorptions caused by the antenna properties were observed at approximately 50 THz, and high polarization dependencies were also observed. The results of the simulation qualitatively agreed with the results of the experiment. The effective area of the antenna was also evaluated and was found to be approximately 3.5 μm2 at 54 THz.  相似文献   

18.
We present a high-power 1.53 μm laser based on intracavity KTA-OPO driven by diode-end-pumped acousto-optical Q-switched YVO4/Nd:YVO4 composite. The composite crystal was utilized for reducing the thermal effect, and the mode mismatch compensating OPO cavity was designed for efficient OPO conversion. The output power of eye-safe laser at 1535 nm was up to 4.4 W with the pump power of 27 W, corresponding to a diode-to-signal conversion efficiency of 16.3%. To our knowledge, this is the highest output power in diode-end-pumped circumstances. In the experiment, the strong yellow light generated by Raman conversion and frequency doubling in the KTA crystal was observed.  相似文献   

19.
Mass transfer coefficient is an important parameter in the process of mass transfer. It can reflect the degree of enhancement of mass transfer process in liquid–solid reaction and in non-reactive systems like dissolution and leaching, and further verify the issues by experiments in the reaction process. In the present paper, a new computational model quantitatively solving ultrasonic enhancement on mass transfer coefficient in liquid–solid reaction is established, and the mass transfer coefficient on silicon surface with a transducer at frequencies of 40 kHz, 60 kHz, 80 kHz and 100 kHz has been numerically simulated. The simulation results indicate that mass transfer coefficient increases with the increasing of ultrasound power, and the maximum value of mass transfer coefficient is 1.467 × 10−4 m/s at 60 kHz and the minimum is 1.310 × 10−4 m/s at 80 kHz in the condition when ultrasound power is 50 W (the mass transfer coefficient is 2.384 × 10−5 m/s without ultrasound). The extrinsic factors such as temperature and transducer diameter and distance between reactor and ultrasound source also influence the mass transfer coefficient on silicon surface. Mass transfer coefficient increases with the increasing temperature, with the decreasing distance between silicon and central position, with the decreasing of transducer diameter, and with the decreasing of distance between reactor and ultrasound source at the same ultrasonic power and frequency. The simulation results indicate that the computational model can quantitatively solve the ultrasonic enhancement on mass transfer coefficient.  相似文献   

20.
A thermal hyperspectral imager is underdevelopment which utilizes the compact Dyson optical configuration and the broadband (8–12 μm) quantum well infrared photodetector (QWIP) focal plane array technology. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray light and large swath width. The configuration has the potential to be the optimal high resolution imaging spectroscopy solution for aerial and space remote sensing applications due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as thermal design trade-offs. The current design uses a single high power cryocooler which allows operation of the QWIP at 40 K with adequate temperature stability.Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of emissivity for various known standard minerals (quartz, opal, alunite). A comparison is made using data from the ASTER spectral library. The current single band (8–9 μm) testbed utilizes the high uniformity and operability of the QWIP array and shows excellent laboratory and field spectroscopic results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号