首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
丁钰  苗博强  赵越  李富民  蒋育澄  李淑妮  陈煜 《催化学报》2021,42(2):271-278,后插16-后插17
近年来,基于析氧反应(OER)的电化学能量转换体系(如电化学制氢、金属空气电池、氮气电还原和二氧化碳电还原)日益受到人们的关注.各种过渡金属基(Mn,Ni,Co,Fe,Cu等)纳米材料(硫化物、氢氧化物、氧化物、磷化物和氮化物等)被认为是潜在的、可以代替贵金属的碱性OER催化剂.其中,高活性和低成本的Ni(OH)2基电催化剂被广泛关注.由于面积效应、结构效应、电子效应和协同效应等因素,Ni(OH)2基纳米材料的电化学活性与其形貌和化学成分密切相关.引入纳米尺寸的孔,不仅加快了传质,而且增加了边缘活性原子的数量,因而有利于活性的增强.超薄二维(2D)纳米片因具有独特的结构特征,可以为电催化反应提供充足的反应位点和低配位数的表面活性原子.杂原子的引入可以调节纳米材料的电子结构和几何结构以提高它们的电催化活性.本文提出了一种简单的混合氰胶水解策略,成功合成了Fe掺杂的Ni(OH)2纳米片(Ni(OH)2-Fe H-STs).氰胶前驱体骨架结构有助于形成超薄多孔的2D结构,而且,通过调节前驱体的浓度就可以获得一定镍铁原子比的产物.不同Fe含量的Ni(OH)2纳米片的OER活性测试结果表明,Ni/Fe比为3:1的Ni(OH)2-Fe H-STs-Ni3Fe1在碱性环境中具有最佳的OER活性.由于Ni(OH)2-Fe H-STs-Ni3Fe1的超薄2D结构使大多数金属原子暴露在表面,使原子利用率最大化.同时,超薄表面上高活性的低配位数的中心原子,可以作为催化OER的高活性中心.薄片上的孔隙有效地增加了高活性边缘原子的数量并且能够加速反应物和生成物的传质.XPS测试结果表明,Fe的引入显著改变了Ni的电子结构,提高了Ni(OH)2 H-STs的导电性,从而促进了电化学过程中NiIV活性物种的产生,进而改变其OER本征活性.三维镍泡沫(NF)可以防止负载纳米材料的聚集,提高转移反应物/产物的传质速率.因此,本文将Fe掺杂的Ni(OH)2纳米片直接生长在NF基底(简写为Ni(OH)2-Fe H-STs/NF).结果表明,NF基底的引入进一步提升导电性和增加传质.综上所述,由于具有高比表面积、丰富的活性原子、Fe/Ni原子之间的协同效应以及NF基底的高导电性和三维多孔特性,通过氰胶水解法获得的Ni(OH)2-Fe H-STs/NF在KOH溶液中表现出优异的OER活性,在10 mA cm^–2电流密度下过电位仅为200 mV,Tafel斜率为56 mV dec^?1,并且材料具有良好的稳定性.  相似文献   

2.
C FeD     
近年来,基于析氧反应(OER)的电化学能量转换体系(如电化学制氢、金属空气电池、氮气电还原和二氧化碳电还原)日益受到人们的关注.各种过渡金属基(Mn, Ni, Co, Fe, Cu等)纳米材料(硫化物、氢氧化物、氧化物、磷化物和氮化物等)被认为是潜在的、可以代替贵金属的碱性OER催化剂.其中,高活性和低成本的Ni(OH)2基电催化剂被广泛关注.由于面积效应、结构效应、电子效应和协同效应等因素, Ni(OH)2基纳米材料的电化学活性与其形貌和化学成分密切相关.引入纳米尺寸的孔,不仅加快了传质,而且增加了边缘活性原子的数量,因而有利于活性的增强.超薄二维(2D)纳米片因具有独特的结构特征,可以为电催化反应提供充足的反应位点和低配位数的表面活性原子.杂原子的引入可以调节纳米材料的电子结构和几何结构以提高它们的电催化活性.本文提出了一种简单的混合氰胶水解策略,成功合成了Fe掺杂的Ni(OH)2纳米片(Ni(OH)2-FeH-STs).氰胶前驱体骨架结构有助于形成超薄多孔的2D结构,而且,通过调节前驱体的浓度就可以获得一定镍铁原子比的产物.不同Fe含量的Ni(OH)2纳米片的OER活性测试结果表明, Ni/Fe比为3:1的Ni(OH)2-Fe H-STs-Ni3Fe1在碱性环境中具有最佳的OER活性.由于Ni(OH)2-FeH-STs-Ni3Fe1的超薄2D结构使大多数金属原子暴露在表面,使原子利用率最大化.同时,超薄表面上高活性的低配位数的中心原子,可以作为催化OER的高活性中心.薄片上的孔隙有效地增加了高活性边缘原子的数量并且能够加速反应物和生成物的传质. XPS测试结果表明, Fe的引入显著改变了Ni的电子结构,提高了Ni(OH)2H-STs的导电性,从而促进了电化学过程中NiIV活性物种的产生,进而改变其OER本征活性.三维镍泡沫(NF)可以防止负载纳米材料的聚集,提高转移反应物/产物的传质速率.因此,本文将Fe掺杂的Ni(OH)2纳米片直接生长在NF基底(简写为Ni(OH)2-FeH-STs/NF).结果表明, NF基底的引入进一步提升导电性和增加传质.综上所述,由于具有高比表面积、丰富的活性原子、Fe/Ni原子之间的协同效应以及NF基底的高导电性和三维多孔特性,通过氰胶水解法获得的Ni(OH)2-FeH-STs/NF在KOH溶液中表现出优异的OER活性,在10m Acm–2电流密度下过电位仅为200 mV, Tafel斜率为56m V dec-1,并且材料具有良好的稳定性.  相似文献   

3.
以高含氮量的苯胺五聚体二羧酸为配体, 在预氧化的泡沫镍上通过溶剂热反应合成了Fe, Co金属有机框架材料Fe/Co-MOF, 再以Fe/Co-MOF为金属源和碳源, 经磷化后制备出一种新型的双金属(Fe, Co)和杂原子(N, P)共掺杂的碳材料Fe/Co/P-NPs. 通过扫描电子显微镜和高分辨透射电子显微镜表征发现, Fe/Co/P-NPs由纳米粒子和纳米片组成, 并且形成Fe2P和Co2P两种晶体. 电化学测试结果表明, Fe/Co/P-NPs在析氢、 析氧及水电解中表现出了优异的多功能催化活性. 在1 mol/L KOH中, Fe/Co/P-NPs在10和100 mA/cm 2电流密度时的析氧过电位分别为270和300 mV, 均小于其它对比材料, 优于负载在泡沫镍上的RuO2. 作为水电解双功能催化剂, Fe/Co/P-NPs仅需1.48 V的电位即可获得10 mA/cm 2的电流密度.  相似文献   

4.
开发低成本、高活性且稳定的非贵金属催化剂是实现大规模电解水制氢的关键所在。在此,我们通过简便、合理的电沉积法在泡沫镍(NF)上构建了一种具备超薄二维纳米片形貌的高度非晶相Co1Fe1-P薄膜用于高效催化析氧反应(OER)。在1.0mol·L-1 KOH溶液中,所制备的Co1Fe1-P/NF催化剂在电流密度为10和100 mA·cm-2处的过电位分别为274.4和329.5 mV,Tafel斜率仅为 45.3 mV·dec-1,可以媲美商业 RuO2催化剂。此外,Co1Fe1-P/NF 催化剂在 10 mA·cm-2的 100 h 计时电压法测试和1 000次循环伏安法测试中均表现出卓越的催化稳定性。Co1Fe1-P/NF催化剂优秀的催化活性归因于其独特的形貌、高度非晶相结构提供的低能垒、优化的电子结构以及钴磷化物和铁磷化物的强协同效应。  相似文献   

5.
以泡沫镍(NF)为基体, 采用常规脉冲伏安法合成了独立分相的金属Ni, Cu为主晶相、 平均粒径为70 nm的规则立方体结构镍铜合金电催化剂(NiCu/NF). 在电催化析氢反应中, NiCu/NF表现出优良的催化活性和优异的催化稳定性, 在电流密度为10 mA/cm 2时, 在1.0 mol/L KOH溶液中需要的析氢过电位仅为86 mV, 催化24 h的电位波动仅为12 mV. 二级复合纳米立方体结构使NiCu/NF展现出15.5倍于空白NF的电化学活性面积(ECSA), 为电催化反应提供了大量催化活性位点, 也为电极表面的电荷传输、 物质传递提供了充足的通道; Cu的引入以及NiO/Ni异质结的形成改善了邻近Ni原子的活性, 使镍基材料本征析氢活性得以改善, 三者协同促进了NiCu/NF电催化活性的提升. NiCu/NF电极在析氢过程中遵循Volmer-Heyrovsky机理, 反应速率由电极表面吸附氢原子的电化学脱附过程决定.  相似文献   

6.
采用水热和低温磷化反应两步法,在无添加沉淀剂条件下成功在泡沫镍上合成纳米花状镍钴磷化物(NiCoP/NF)。研究结果表明,镍/钴元素物质的量之比为1∶1时,在1 A·g~(-1)电流密度下,Ni_(1/2)Co_(1/2)P/NF的比容量高达1 276.36 F·g~(-1),在10 A·g~(-1)电流密度下充放电循环3 000次后,比容量保持率为78.23%。此外,以Ni_(1/2)Co_(1/2)P/NF为正极,活性炭(AC)为负极组装的非对称超级电容器(Ni_(1/2)Co_(1/2)P/NF//AC/NF)在725 W·kg~(-1)的功率密度下,能量密度高达36.25 Wh·kg~(-1)。  相似文献   

7.
开发低成本、高活性且稳定的非贵金属催化剂是实现大规模电解水制氢的关键所在。在此,我们通过简便、合理的电沉积法在泡沫镍(NF)上构建了一种具备超薄二维纳米片形貌的高度非晶相Co1Fe1-P薄膜用于高效催化析氧反应(OER)。在1.0mol·L-1 KOH溶液中,所制备的Co1Fe1-P/NF催化剂在电流密度为10和100 mA·cm-2处的过电位分别为274.4和329.5 mV,Tafel斜率仅为45.3 mV·dec-1,可以媲美商业RuO2催化剂。此外,Co1Fe1-P/NF催化剂在10 mA·cm-2的100 h计时电压法测试和1 000次循环伏安法测试中均表现出卓越的催化稳定性。Co1Fe1-P/NF催化剂优秀的催化活性归因于其独特的形貌、高度非晶相结构提供的低能垒、优化的电子结构以及钴磷化物和铁磷化物的强协同效应。  相似文献   

8.
使用硫酸镍、硝酸铁、磷酸二氢铵和柠檬酸钠在泡沫镍为载体的基底上,采用电沉积方法制备出泡沫镍负载Ni磷化物(nickel phosphide)和泡沫镍负载Fe磷化物(iron phosphide)两种电催化剂,通过SEM测试表征催化剂的结构及形貌,并通过电化学测试催化剂的析氧和析氢及催化活性等参数。研究结果表明:在100mA/cm2电流密度下,Ni磷化物工业过电位为349mV,相较于Fe磷化物催化活性性能高了33%;Ni磷化物和Fe磷化物的催化面积(Cdl)值分别为27.01 mF/cm2和3.64 mF/cm2,Ni磷化物较Fe磷化物的活性面积提高近10倍。  相似文献   

9.
以泡沫镍(NF)为集流体,在优化好的电位、时间和浓度下,将还原氧化石墨烯(rGO)、金属氧化物(Co_3O_4和NiO)直接生长在泡沫镍上,制备了NF/rGO/Co_3O_4和NF/rGO/Co_3O_4/NiO电极.运用三电极体系对电极材料进行了恒流充放电(GCD)和交流阻抗(EIS)等测试.结果表明,复合材料NF/rGO/Co_3O_4/NiO具有较高的比容量(电流密度为2 A/g时,比容量达到1188.6 F/g)和较好的循环稳定性(2000周充放电后,稳定性达到80.5%).该材料还具有较高的倍率性能,当电流密度由2 A/g增至12 A/g时,倍率性能仍能达到75.7%.  相似文献   

10.
研究廉价且高效的水分解电催化剂对于氢能源的开发利用具有重要意义,过渡金属磷化物是最有前景的水分解双功能电催化剂之一。本研究采用先水热法,再低温磷化的简单的两步合成法,在三维镍网上生长CoP纳米珠链阵列,所生成的镍网(Nickel foam,NF)负载CoP纳米珠线阵列(CoP/NF),具有规则的形貌、较大的比表面积,在碱性条件下对氢气析出反应(HER)和氧气析出反应(OER)都表现出良好的电催化性能。在电流密度达到10 mA/cm~2时的过电位分别为280 mV(OER)及95 mV(HER)。利用此CoP/NF复合材料组成的双电极体系可以有效电解水,在电流密度为10 mA/cm~2时所需的施加电压仅为1.63 V,并且表现出非常高的稳定性。  相似文献   

11.
F-和Fe3+掺杂对Ti基PbO2阳极性能的影响   总被引:2,自引:0,他引:2  
采用热分解-电镀法制备了Ti基PbO2,阳极(Ti/PbO2),F-掺杂PbO2阳极(Ti/F-PbO2),Fe3+掺杂PbO2阳极(TiP/Fe-PbO2)和F-,Fe3+共掺杂PbO2,阳极(Ti/F-Fe-PbO2).采用XRD和EDX测试对电极进行了表征,应用加速电解寿命测试和电催化降解4-氯苯酚(4-CP)污水,考察了F-掺杂,Fe3+掺杂和F-,Fe3+共掺杂对PbO2阳极稳定性及电催化活性的影响.结果表明,Ti/F-PbO2和Ti/FePbO2阳极有相近的电催化降解活性,但与Fe3+掺杂相比,F-掺杂大大提高了PbO2阳极的加速电解寿命.对Ti/F-Fe-PbO2阳极,Fe3+掺杂改善了其导电性能.同时F-掺杂提高了阳极的稳定性能,使其有较长的电解寿命.与Ti/PbO2,Ti/F-PbO2和Ti/Fe-PbO2阳极相比,Ti/F-Fe-PbO2阳极的电催化降解活性显著提高,这不仅与其导电性能的改善有关,更与F-掺杂和Fe3+掺杂对4-CP降解的表面协同作用有关.  相似文献   

12.
用浸渍法制备了镍铁氧体/碳纳米管(NF/MWNTs)复合材料。用XRD、SEM、TEM、VSM、UV-Vis等表征了样品的组成、结构、形貌、磁性能和吸附性能。结果表明,制备的NF/MWNTs复合材料保留了碳纳米管优良的吸附性能,且具有良好的镍铁氧体负载率和优异的磁性能。质量比(mNF/mMWNTs)为1的NF/MWNTs复合材料对亚甲基蓝溶液的最大吸附容量为18.87 mg·g-1,其吸附行为符合Langmuir和Freundlich模型。NF/MWNTs复合材料对亚甲基蓝溶液的脱色率与溶液温度和pH值呈正相关性。此外,NF/MWNTs复合材料回收容易,活化处理简便,可重复使用。  相似文献   

13.
本文中主要研究了原始溶液中Ni、Co质量比(wNi∶wCo)对Ni-Co-S-O复合材料催化剂结构及性能的影响。采用水热法在泡沫镍(NF)基底上制备出了三维分层花瓣状纳米结构的Ni-Co-S-O复合材料催化剂。当原始溶液中wNi∶wCo=1∶2时,所制备的Ni-Co-S-O/NF(1∶2)催化剂具有更大的电化学活性面积(ECSA),在碱性水电解析氧过程中具有最好的电催化性能。在1 mol·L-1KOH碱性溶液中,Ni-Co-S-O/NF(1∶2)仅需61和313 mV的过电位,可分别获得10和100 mA·cm-2的电流密度,并且其Tafel斜率为155 mV·dec-1。Ni-Co-S-O/NF(1∶2)催化剂在碱性条件下100 mA·cm-2的恒定高电流密度下运行24 h后仍能保持片状结构,表现出良好的稳定性。  相似文献   

14.
用浸渍法制备了镍铁氧体/碳纳米管(NF/MWNTs)复合材料。用XRD、SEM、TEM、VSM、UV-Vis等表征了样品的组成、结构、形貌、磁性能和吸附性能。结果表明,制备的NF/MWNTs复合材料保留了碳纳米管优良的吸附性能,且具有良好的镍铁氧体负载率和优异的磁性能。质量比(mNF/mMWNTs)为1的NF/MWNTs复合物对亚甲基蓝溶液的最大吸附容量为18.87mg·g-1,其吸附行为符合Langmuir和Freundlich模型。NF/MWNTs复合材料对亚甲基蓝溶液的脱色率与溶液温度和pH值呈正相关性。此外,NF/MWNTs复合材料回收容易,活化处理简便,可重复使用。  相似文献   

15.
氮掺杂竹节状碳纳米管的催化合成   总被引:1,自引:0,他引:1  
以有机胺为碳和氮源, 用催化方法合成出了含氮大管径竹节状碳纳米管. Fe/SBA-15分子筛为催化剂, 有机胺经过973 K高温裂解得到氮掺杂竹节状碳纳米管材料(CNX). 比较了铁含量、二乙胺和六次甲基四胺原料对合成氮掺杂碳纳米管形貌和氮掺杂量的影响; 合成出氮碳比(N/C原子比)为0.26的氮掺杂竹节状碳纳米管材料.  相似文献   

16.
采用K3[Fe(CN)6]作为锌镍电池的电解液添加剂,克服了锌阳极的变形。此外,通过一系列实验设计和表征,探索了电解液中金属锌与K3[Fe(CN)6]的反应机理。通过XRD (X-ray diffraction)和XPS (X-ray photo-electron spectroscopy)测试,我们发现金属锌在KOH水溶液中能够与K3[Fe(CN)6]反应,将[Fe(CN)6]3–还原为[Fe(CN)6]4−。添加K3[Fe(CN)6]的锌镍电池实现了更长的循环寿命,比不添加K3[Fe(CN)6]的锌镍电池长3倍以上。在相同循环次数下,改性电解质中锌阳极循环不仅形状变化较小,而且没有出现“死”锌现象,电极添加剂和粘结剂也没有发生偏析。此外,不同于一般的有机添加剂,K3[Fe(CN)6]的加入不仅不会增大电极的极化,还能够提高锌镍电池的放电容量和倍率性能。因此,考虑到这一改性策略有着较高的可行性和较低的成本,K3[Fe(CN)6]添加剂在锌镍电池的实际应用中具有极大的推广潜力。  相似文献   

17.
本文中主要研究了原始溶液中Ni、Co质量比(w_N∶iw_(Co))对Ni-Co-S-O复合材料催化剂结构及性能的影响。采用水热法在泡沫镍(NF)基底上制备出了三维分层花瓣状纳米结构的Ni-Co-S-O复合材料催化剂。当原始溶液中w_N∶iw_(Co)=1∶2时,所制备的Ni-Co-S-O/NF(1∶2)催化剂具有更大的电化学活性面积(ECSA),在碱性水电解析氧过程中具有最好的电催化性能。在1 mol·L~(-1)KOH碱性溶液中,Ni-Co-S-O/NF(1∶2)仅需61和313 mV的过电位,可分别获得10和100 mA·cm~(-2)的电流密度,并且其Tafel斜率为155 mV·dec~(-1)。Ni-Co-S-O/NF(1∶2)催化剂在碱性条件下100 mA·cm~(-2)的恒定高电流密度下运行24 h后仍能保持片状结构,表现出良好的稳定性。  相似文献   

18.
利用粉末微电极恒电位阶跃法 ,研究了掺杂元素对球形 Ni(OH) 2 阳极过程和阴极过程质子扩散系数的影响 .结果表明 ,与纯 Ni(OH) 2 相比 ,掺 Co、Co Zn、Ca后镍微电极的阳极过程质子扩散系数稍有增大 ,掺 Zn、Fe、Mg后则有所降低 ,而掺杂 Co、Ca后的阴极过程质子扩散系数增大约 1倍 ,掺杂 Fe、Mg后则减少约 3/4倍 ;掺 Cd对阳极和阴极过程的质子扩散系数影响均不大 .尽管掺杂元素对扩散层厚度的影响不大 ,但阴极过程扩散系数比阳极过程小约 2个数量级 ,将是影响阴、阳极电极电化学过程的重要因素 .  相似文献   

19.
偶氮染料是纺织印染工业废水中的主要污染物,其大量排放会严重危害生物健康。为了开发一类有效的纳米催化剂对废水中的偶氮染料进行脱色,本文采用简单的水热合成法将Fe、Co元素掺杂到镍纳米材料中形成了具有三维网状多孔结构的三元金属纳米材料(Fe-Co-Ni NPs)。所制备的三元合金纳米材料为三维网状结构,少量的Fe、Co元素掺杂获得了更高的饱和磁化率,而未改变镍的多晶结构。在硼氢化钠存在条件下,由于多种金属元素之间的相互作用,Fe-Co-Ni NPs对刚果红的还原降解具有非常高的催化活性,2 min即可完全脱色,表观速率常数为1.24 min-1,明显优于二元Fe-Ni(1.00 min-1)、Co-Ni(0.96 min-1)及单金属Ni(0.83 min-1)纳米晶。Fe-Co-Ni NPs对其它偶氮染料甲基橙、直接红80及硝基苯酚类物质的还原降解也表现出较佳的催化性能。总之,该三元金属催化剂易于合成、成本低,对偶氮染料脱色效果好、稳定性高且可重复使用,非常适合工业偶氮废水的前期脱色处理。  相似文献   

20.
本文研究了K4[Fe(CN)6]掺杂对溴碘化银T-颗粒乳剂感光性能的影响.结果表明,掺杂剂的掺杂量以及掺杂位置对乳剂的感光性能都有影响.K4[Fe(CN)6]的掺杂量在每克乳剂31×10-9-31×10-11mol之间时,乳剂感光度都有提高.最佳掺杂量为每克乳剂31×10-10mol.掺杂位置接近表面时效果相对较好,表明K4[Fe(CN)6]是浅电子陷阱掺杂剂.当掺杂剂的掺杂量大于每克乳剂31×10-8mol,且掺杂位置在乳剂颗粒较深内部时,乳剂的感光度反而下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号