首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
On the wire: Mesoporous tin dioxide (SnO(2)) wired with very low amounts (≤1?%) of reduced graphene oxide (rGO) exhibits a remarkable improvement in lithium-ion battery performance over bare mesoporous or solid nanoparticles of SnO(2). Reversible lithium intercalation into SnO(2)/SnO over several cycles was demonstrated in addition to conventional reversible lithium storage by an alloying reaction.  相似文献   

2.
Through an organometallic approach, ultrathin SnO(x)Fe(y)S(z) plates with ~2 nm single layer-thicknesses were obtained and their graphene composites showed very promising discharge capacities of up to 736 mA h g(-1) and excellent stabilities as anode materials in lithium ion batteries.  相似文献   

3.
Growth and structure evolution of novel tin oxide diskettes   总被引:1,自引:0,他引:1  
The novel SnO diskettes have been synthesized by evaporating either SnO or SnO(2) powders at elevated temperature. Disregard the source material being SnO or SnO(2), the SnO diskettes are formed at a low-temperature region of 200-400 degrees C. Two types of diskette shapes have been identified: the solid-wheel shape with a drop center rim (type I) and the diskette with cone peak(s) and spiral steps (type II). The diskettes are determined to be tetragonal SnO structure (P4/nmm), with their flat surfaces being (001). The formation of the SnO diskettes is suggested to result from a solidification process. The structural evolution from SnO diskettes to SnO(2) diskettes has been investigated by oxidizing at different temperatures. The result shows that the phase transformation from SnO to SnO(2) occurs in two processes of decomposition and oxidization, and the decomposition process consists of two steps: first from SnO to Sn(3)O(4) and then from Sn(3)O(4) to SnO(2).  相似文献   

4.
The present study is concerned with the structural and electronic properties of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. Periodic quantum mechanical method with density functional theory at the B3LYP level has been carried out. Relaxed surface energies, structural characteristics and electronic properties of the (110), (010), (101) and (00) low-index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 models are studied. For comparison purposes, the bare rutile TiO2 and SnO2 structures are also analyzed and compared with previous theoretical and experimental data. The calculated surface energy for both rutile TiO2 and SnO2 surfaces follows the sequence (110) < (010) < (101) < (001) and the energy increases as (010) < (101) < (110) < (001) and (010) approximately = (110) < (101) < (001) for SnO2/TiO2/SnO2 and TiO2/SnO2/TiO2 composite systems, respectively. SnO2/TiO2/SnO2 presents larger values of surface energy than the individual SnO2 and TiO2 metal oxides and the TiO2/SnO2/TiO2 system renders surface energy values of the same order that the TiO2 and lower than the SnO2. An analysis of the electronic structure of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 systems shows that the main characteristics of the upper part of the valence bands for all the studied surfaces are dominated by the external layers, i.e., by the TiO2 and the SnO2, respectively, and the topology of the lower part of the conduction bands looks like the core layers. There is an energy stabilization of both valence band top and conduction band bottom for (110) and (010) surfaces of the SnO2/TiO2/SnO2 composite system in relation to their core TiO2, whereas an opposite trend is found for the same surfaces of the TiO2/SnO2/TiO2 composite system in relation to the bare SnO2. The present theoretical results may explain the growth of TiO2@SnO2 bimorph composite nanotape.  相似文献   

5.
SnO2是一种具有丰富表面缺位氧的n型半导体,其晶格氧亦可还原.另外其熔点高达1630oC,具有较高的热稳定性能.在过去的几十年中, SnO2主要用作气敏材料.而其作为催化材料的性能,特别是用于大气污染治理则鲜见报道.在过去的几年中,本课题组系统研究了SnO2的催化化学,发现利用传统共沉淀法制备的SnO2纳米粉末,在焙烧温度高于500 oC时,其比表面积通常低于20 m2/g,因而限制了其氧化活性.在SnO2晶格中掺杂Fe、Cr、Mn、Ce和Ta等形成固溶体可有效提高其比表面积并产生更多的活性氧物种,因而其对CO和CH4的氧化活性及稳定性大幅度提高.本课题组近期研究结果表明,采用熔盐法制备的高纯SnO2纳米棒单晶比SnO2纳米颗粒和纳米微球等具有更优异的CO氧化活性,260 oC即可完全氧化CO.且在240–260 oC狭窄温度区间发生转化率突跃,表现出类似贵金属的催化行为.值得指出的是, SnO2纳米棒的比表面积(1 m2/g)远低于其他几种形貌的材料,且无活泼氧存在.但研究表明SnO2纳米棒具有优先暴露的(110)活泼晶面,是导致其活性优良的主要原因.另外,我们采用简单共沉淀法成功制备了高比表面介孔Cu-Sn复合氧化物纳米片(196 m2/g),其在140 oC即可将CO完全氧化,且具有优良的抗水失活性能.因此, SnO2的形貌是影响其催化活性的主要因素之一,但迄今未见较系统深入的研究.在上述工作基础上,本文通过水热法,不添加任何有机模板剂,成功制备了厚度约10 nm的介孔SnO2纳米片和纳米棒及纳米颗粒混合物样品;采用常规共沉淀法制备了SnO2纳米颗粒.并将以上三种不同形貌的SnO2纳米材料用于CO氧化.利用SEM、XRD、N2吸附-脱附、H2-TPR和XPS探讨了不同形貌SnO2催化剂的体相结构和表面性质及其对催化性能的影响.与SnO2纳米颗粒相比,介孔SnO2纳米片具有高的比表面积、孔体积及更活泼的氧中心,因此后者CO氧化活性远高于前者.在空速18000 mL/(g·h)时, SnO2纳米片在260 oC即可完全氧化CO.而SnO2纳米颗粒的CO完全氧化温度高于360 oC. SnO2纳米棒和纳米颗粒的混合样品虽然其比表面积和孔体积及表面活性氧的活性仅略高于SnO2纳米颗粒,但XRD定量结果表明,其具有更多的暴露(110)活泼晶面,因而活性也高于SnO2纳米颗粒. SnO2纳米片催化剂的寿命及抗水性能测试结果表明,该催化剂具有良好的稳定性,且水蒸气仅对其活性产生可恢复的影响.进一步优化其性能, SnO2纳米片有可能用于实际汽车尾气状况下的CO催化清除.  相似文献   

6.
原位合成CoPc/SnO2的键合特性及可见光光催化活性   总被引:3,自引:1,他引:2  
报道了酞菁钴(CoPc)分子原位自组装于纳米SnO2颗粒表面, CoPc大环分子与SnO2表面形成Co—O轴向相互作用, 测定了原位合成方法(标记为i)制备的CoPc/SnO2(i)与浸渍法(标记为d)制备CoPc/SnO2(d)间的结合特性, 并进行了可见光光催化表征及CoPc敏化机理探讨. 结果表明, 在结合位点数相当的情况下, CoPc/SnO2(i)结合常数比CoPc/SnO2(d)的高两个数量级, 前者的光催化效率亦比后者高32.5%(光照150 min), 且CoPc/SnO2(i)光催化稳定性较高(重复十次循环使用). 其CoPc敏化SnO2的机理为, 由于敏化剂与半导体之间存在的强相互作用, 不仅增强了光生电荷在CoPc的LUMO与SnO2半导体导带间的导入效率及光生电荷对的分离效率, 而且提高了敏化剂的负载稳定性与循环光催化效率的持续性.  相似文献   

7.
To enhance the cycling stability of Pt-based catalysts,the anti-corrosion property of support and the attachment of Pt with support should both get improved.For this purpose,a novel method is presented for in situ preparing Pt/SnO2.The structure of Pt/ SnO2 is characterized by X-ray diffraction(XRD) and transmission electron microscopy(TEM),confirming the homogeneous deposition of Pt on SnO2.The high resolution TEM(HRTEM) shows the large interfaces between Pt and SnO2.The TEM photos recorded after accelerated durability tests with Pt/SnO2 show that the agglomeration and size increment of Pt particles is not severe, indicating the good stability of Pt/SnO2.The electrochemical active surface area(EAS) of Pt/SnO2 keeps increasing during the 1000 cycles of cyclic voltammetric(CV) sweeping in H2SO4,while the EAS decayed by 35%when mixing Pt/SnO2 with carbon nanotubes(CNTs),indicating the superior anti-corrosion property of SnO2 in contrast to CNTs.  相似文献   

8.
Nanoporous SnO(2)-ZnO heterojunction nanocatalyst was prepared by a straightforward two-step procedure involving, first, the synthesis of nanosized SnO(2) particles by homogeneous precipitation combined with a hydrothermal treatment and, second, the reaction of the as-prepared SnO(2) particles with zinc acetate followed by calcination at 500 °C. The resulting nanocatalysts were characterized by X-ray diffraction (XRD), FTIR, Raman, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analyses, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy. The SnO(2)-ZnO photocatalyst was made of a mesoporous network of aggregated wurtzite ZnO and cassiterite SnO(2) nanocrystallites, the size of which was estimated to be 27 and 4.5 nm, respectively, after calcination. According to UV-visible diffuse reflectance spectroscopy, the evident energy band gap value of the SnO(2)-ZnO photocatalyst was estimated to be 3.23 eV to be compared with those of pure SnO(2), that is, 3.7 eV, and ZnO, that is, 3.2 eV, analogues. The energy band diagram of the SnO(2)-ZnO heterostructure was directly determined by combining XPS and the energy band gap values. The valence band and conduction band offsets were calculated to be 0.70 ± 0.05 eV and 0.20 ± 0.05 eV, respectively, which revealed a type-II band alignment. Moreover, the heterostructure SnO(2)-ZnO photocatalyst showed much higher photocatalytic activities for the degradation of methylene blue than those of individual SnO(2) and ZnO nanomaterials. This behavior was rationalized in terms of better charge separation and the suppression of charge recombination in the SnO(2)-ZnO photocatalyst because of the energy difference between the conduction band edges of SnO(2) and ZnO as evidenced by the band alignment determination. Finally, this mesoporous SnO(2)-ZnO heterojunction nanocatalyst was stable and could be easily recycled several times opening new avenues for potential industrial applications.  相似文献   

9.
SnO(2) nanotubes have been prepared via a facile hydrothermal method at low temperatures using polycarbonate (PC) membrane as a hard template. The walls of as-prepared SnO(2) nanotubes are composed of fine nanocrysalline particles and the size of SnO(2) nanocrystals could be modified by changing reaction temperature. Formation mechanism of SnO(2) nanotubes is also discussed according to the experimental results. Cathodoluminescence properties of the SnO(2) product indicated that the band gap of the nanostructures increase from 3.75 eV with a particle size 5.6 nm to 3.99 eV with a particle size 3.3 nm. The as-prepared SnO(2) nanotubes were found to show enhanced gas-sensing activity and may be used as a candidate for the fabrication of gas sensors.  相似文献   

10.
以SnO2为载体, 采用沉积沉淀法(DP)、共沉淀法(CP)和浸渍法(IM)制备了金负载Au/SnO2催化剂, 同时采用沉积沉淀法制备了M-Au/SnO2(M=Pd, Pt)双金属负载催化剂. 通过X射线衍射(XRD)、BET比表面积测定、透射电镜(TEM)和X射线光电子能谱(XPS)等技术对样品进行表征, 并测定其对CO的催化活性. 结果表明: 与CP法和IM 法相比, DP法制备的Au/SnO2-DP 催化剂, Au 颗粒(<5 nm)较小, 分布均匀; Au/SnO2-DP 中的Au 是以金属态Au0存在, 而Au/SnO2-CP 和Au/SnO2-IM 中, 金以Au0和Au3+的混合价态存在, 在Au/SnO2-DP和M-Au/SnO2中的Au、Pt、Pd和SnO2之间存在相互作用; Au/SnO2-DP 催化性能明显优于Au/SnO2-CP 和Au/SnO2-IM. Au与Pt 和Pd的双金属复合催化剂催化活性明显提高. 不同方法制备Au/SnO2催化活性的差别主要是由于Au颗粒大小和Au氧化态的不同而产生. 而M-Au/SnO2活性提高, 可能是由于Au与Pt 和Pd之间的相互作用.  相似文献   

11.
采用水辅助化学气相沉积法制备了结晶性好的一维带状SnO2. 分别以小粒径锡粉和金修饰的小粒径锡粉作为反应原料制得带宽度不同的带状SnO2, 小粒径锡粉作为反应原料能提高带状SnO2的产率. 将所得SnO2带和SnO2纳米颗粒按不同比例混合配制成胶体, 采用刮涂法制备含不同比例纳米颗粒和纳米带的复合SnO2薄膜并组装染料敏化太阳能电池(DSSCs)来评价带状SnO2的电子输运性能. 组装的太阳能电池表现出与复合纳晶薄膜中一维SnO2带的带宽度和所含比例密切相关的光电性能. 通过强度调制光电流谱的测量确定复合SnO2薄膜的电子传输速率, 并进一步分析一维材料所具有的良好电子传输性能对光电流增加的贡献. 因为一维SnO2带在复合纳晶薄膜中作为电子输运的快速通道可以加快电子的输运速度, 所以以适宜的比例添加具有合适宽度的一维SnO2带可以明显提高太阳能电池的光电性能.  相似文献   

12.
纳米SnO2@TiO2包覆催化剂的制备及表征   总被引:5,自引:0,他引:5  
采用活性层包覆法在自制细SnO2胶体粒子表面包覆TiO2,制备出SnO2@TiO2包覆型复合催化剂,以其对有机磷农药DDVP的降解效果作为评价光催化活性的标准,对制备条件进行了优化,并用XRD、TEM和BET等手段对样品进行了表征,结果表明,SnO2胶体乙醇溶液含水量20%,钛酸丁酯质量分数为34.5%。灼烧温度680℃时制得TiO2含量56.45%的包覆样品SnO2@TiO2为纳米级粒子,且其光催化活性最佳。  相似文献   

13.
 用XRD, XPS, CO-TPR, NH3-TPD, SO2-TPD和IR等方法表征了SnO2-TiO2固溶体催化剂的物理化学性质. 不同配比的SnO2和TiO2均可形成均一的具有金红石结构的连续固溶体,其晶粒度比单纯的SnO2或TiO2的晶粒度小. SnO2-TiO2固溶体的比表面积随SnO2含量的增大呈火山形变化,说明在SnO2-TiO2固溶体中SnO2可阻止TiO2由锐钛矿型变为金红石型过程中比表面积的减小,而TiO2则提供了维持大表面的结构框架. SnO2倾向于在固溶体表面偏析,固溶体的表面氧含量高于单纯SnO2的表面氧含量而低于单纯TiO2的表面氧含量. SnO2, TiO2和SnO2-TiO2表面含有能被CO还原的吸附氧和晶格氧,被还原的SnO2, TiO2和SnO2-TiO2的表面晶格氧的数量仅占所有晶格氧的0.001%, 说明CO只使部分晶格氧还原并生成氧阴离子空穴. TiO2表面没有酸性, SnO2和SnO2-TiO2呈微弱酸性. 经CO还原的SnO2-TiO2上存在大量的强碱中心,说明SnO2和TiO2之间发生了协同作用. SnO2-TiO2固溶体的这些物化性质均十分有利于SO2+NO+CO的氧化还原反应.  相似文献   

14.
纳米SnO2@TiO2的制备及其光催化性能   总被引:18,自引:0,他引:18  
以SnCl4和Ti(OBu)4为原料,采用活性层包覆法制备了SnO2@TiO2包覆型复合光催化剂,并用XPS、IR、XRD、TEM和BET等手段进行了表征,以二甲基二氯乙烯基磷酸酯(简称DDVP)稀释液为模拟废水,考察了SnO2@TiO2的光催化活性及降解液初始浓度对反应动力学的影响.结果表明:包覆粒子由锐钛矿型TiO2和金红石型SnO2组成;与纯SnO2、TiO2相比,SnO2@TiO2包覆粒子的光催化活性明显提高,DDVP稀释液被光催化降解属于零级反应,但反应表观速率常数与降解液初始浓度成正比.  相似文献   

15.
A novel layer-by-layer approach has been developed to synthesize polycrystalline SnO(2) hollow spheres with tunable shell thickness and size using SiO(2) spheres as a template. The surface of the SiO(2) spheres has been first modified by the polyelectrolyte, and subsequently, the compact SnO(2) layer has deposited on the surface of the SiO(2) spheres through a redox reaction because of the electrostatic attraction between the charged species. After HF etching treatment, the uniform SnO(2) hollow spheres have been obtained. The approach presented herein has been extended to synthesize other metal oxide and sulfide hollow spheres such as In(2)O(3) and ZnS. Moreover, the as-synthesized SnO(2) hollow spheres have been applied in lithium-ion battery and show improved performance compared with SnO(2) nanoparticles. The high surface area and stable hollow structure of the SnO(2) hollow spheres may be responsible for the improved performance.  相似文献   

16.
Ru-doped SnO2 nanoparticles were prepared by chemical precipitation and calcinations at 823 K. Due to high stability in diluted acidic solution, Ru-doped SnO2 nanoparticles were selected as the catalyst support and second catalyst for methanol electrooxidation. The micrograph, elemental composition, and structure of the Ru-doped SnO2 nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. The electrocatalytic properties of the Ru-doped SnO2-supported Pt catalyst (Pt/Ru-doped SnO2) for methanol oxidation have been investigated by cyclic voltammetry. Under the same loading mass of Pt, the Pt/Ru-doped SnO2 catalyst shows better electrocatalytic performance than the Pt/SnO2 catalyst and the best atomic ratio of Ru to Sn in Ru-doped SnO2 is 1/75. Additionally, the Pt/Ru-doped SnO2 catalyst possesses good long-term cycle stability.  相似文献   

17.
Heavily F-doped SnO(2) nanocrystals were successfully prepared by a novel synthetic approach involving low-temperature oxidation of a Sn(2+)-containing fluoride complex KSnF(3) as the single-source precursor with H(2)O(2). The F-doped SnO(2) powder was characterized by powder X-ray diffraction, TG-MS, BET surface area, diffuse reflectance spectroscopy, XPS, PL, FTIR spectroscopy, Raman spectroscopy, EPR spectroscopy, SEM, and TEM. Broadening of the diffracted peaks, signifying the low crystallite size of the products, was quite evident in the powder X-ray diffraction pattern of SnO(2) obtained from KSnF(3). It was indexed in a tetragonal unit cell with lattice constants a = 4.7106 (1) ? and c = 3.1970 (1) ?. Agglomeration of particles, with an average diameter of 5-7 nm, was observed in the TEM images whose spotwise EDX analysis indicated the presence of fluoride ions. In the core level high-resolution F 1s spectrum, the peak observed at 685.08 eV was fitted by the Gaussian profile yielding the fluoride ion concentration to be 21.23% in the SnO(2) lattice. Such a high fluoride ion concentration is reported for the first time in powders. SnO(2):F nanocrystals showed greater thermal stability up to 300 °C when heated in a thermobalance under flowing helium, after which generation of small quantities of HF was observed in the TG coupled mass spectrometry analysis. The band gap value, estimated from the Kubelka-Munk function, showed a large shift from 3.52 to 3.87 eV on fluoride ion doping, as observed in the diffuse reflectance spectrum. Such a large shift was corroborated to the overdoped situation due to the Moss-Burstein effect with an increase in the carrier concentration. In the photoluminescence (PL) spectrum, SnO(2):F nanocrystals exhibited a broad green emission arising from the singly ionized oxygen vacancies created due to higher dopant concentration. The evidence for singly ionized vacancies was arrived from the presence of a signal with a g value of 1.98 in the ESR spectrum of SnO(2):F at room temperature. The disordered nature of the rutile lattice and the enormous oxygen vacancies created due to fluoride ion doping were evident from the broad bands observed at 455, 588, and 874 cm(-1) in the room-temperature Raman spectrum of SnO(2):F. As the consequence of the oxygen vacancies, F-doped SnO(2) was examined for the function as a photocatalyst in the degradation of aqueous RhB dye solution under UV irradiation. A very high photocatalytic efficiency was observed for the F-doped SnO(2) nanocrystals as compared to pure SnO(2). The BET surface area of pure SnO(2) was quite high (207.81 m(2)/g) as compared to the F-doped SnO(2) nanocrystals (45.16 m(2)/g). Pore size analysis showed a mean pore diameter of 1.97 and 13.97 nm for the pure and doped samples. The increased photocatalytic efficiency was related to the very high concentration of oxygen vacancies in SnO(2) induced by F doping.  相似文献   

18.
Tin oxide (SnO(2))/carbon nanofibers (CNFs) heterostructures were fabricated by combining the versatility of the electrospinning technique and template-free solvent-thermal process. The results revealed that the SnO(2) nanostructures were successfully grown on the primary electrospun carbon nanofibers substrates. And, the coverage density of SnO(2) nanoparticles coating on the surface of the CNFs could be controlled by simply adjusting the mass ratio of CNFs to SnCl(4)·5H(2)O in the precursor during the solvent-thermal process for the fabrication of SnO(2)/CNFs heterostructures. The electrochemical performances of the SnO(2)/CNFs heterostructures as the electrode materials for supercapacitors were evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge measurement in 1 M H(2)SO(4) solution. At different scan rates, all the samples with different coverage densities of SnO(2) showed excellent capacitance behavior. And, the sample CS2 (the mass ratio of CNFs to SnCl(4)·5H(2)O reached 1:7) exhibited a maximum specific capacitance of 187 F/g at a scan rate of 20 mV/s. Moreover, after 1000 cycles, the specific capacitance retention of this sample was over 95%. The high capacitive behavior could be ascribed to the low resistance of SnO(2)/CNFs heterostructures and rapid transport of the electrolyte ions from bulk solution to the surface of SnO(2).  相似文献   

19.
纳米SnO_2@TiO_2的制备及其光催化性能   总被引:1,自引:0,他引:1  
SnCl4和 Ti(OBu)4为原料,采用活性层包覆法制备了 SnO2@TiO2包覆型复合光催化剂,并用 XPS、 IR、 XRD、 TEM和 BET等手段进行了表征,以二甲基二氯乙烯基磷酸酯(简称 DDVP)稀释液为模拟废水,考察了 SnO2@TiO2的光催化活性及降解液初始浓度对反应动力学的影响 .结果表明:包覆粒子由锐钛矿型 TiO2和金红石型 SnO2组成;与纯 SnO2、 TiO2相比, SnO2@TiO2包覆粒子的光催化活性明显提高, DDVP稀释液被光催化降解属于零级反应,但反应表观速率常数与降解液初始浓度成正比 .  相似文献   

20.
TiO2/SnO2复合光催化剂的耦合效应   总被引:34,自引:0,他引:34  
采用改进的 sol-gel技术制备TiO2/SnO2耦合型半导体光催化剂,利用XRD、气相色谱仪、粒度仪和表面光电压装置等研究了耦合型半导体光催化机理和光催化效率的影响因素,并通过降解甲醛探讨其在空气污染治理中的作用。实验结果表明,添加20%(mol)SnO2的复合半导体光催化剂,其光催化效率比纯TiO2高一倍以上。据实验结果和粒子紧密堆积原理,提出强耦合效应和弱耦合效应的光催化反应模型,并用此模型较好地解释了TiO2/SnO2复合型半导体光催化剂的光催化效率随SnO2 含量变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号