首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用硫代二乙酸配体[thiodiacetic acid = H2tda]与稀土盐[SmCl3·nH2O,DyCl3·nH2O]反应合成了两种新型稀土配合物[Ln2(tda)3(H2O)2]n (Ln = Sm(1), Dy(2)),单晶结构分析表明:两个配合物结构相同,均是通过以共边多面体[Ln2O16]为基本单元的一维稀土金属链拓展而成的二维层状结构。有趣的是,在配合物中,硫代二乙酸配体展现了两种配位模式:双“顺-顺桥式双齿、螫合-桥式三齿”模式和双“螯合-桥式三齿、顺-反桥式双齿”模式;正是通过配体这两种配位方式的连接,上述一维稀土金属链扩展为具有(3,4,5,6)连接(47·68)(44·66) (45·6)(46)(43)拓扑结构的二维网络。荧光性质研究表明,在室温下镝配合物呈现黄色荧光,钐配合物呈现鲑鱼粉色荧光。  相似文献   

2.
潘兆瑞 《无机化学学报》2011,27(10):2027-2032
由溶液法合成了2个稀土配合物{[Ln(Hmtyaa)3(H2O)2].H2O}n(Ln=Nd,1;Pr,2)(Hmtyaa=2-(5-甲基-1,3,4-噻二唑)-硫乙酸),用X-射线单晶衍射仪测定了配合物的单晶结构,并对其进行了元素分析、红外光谱、热重和粉末X-射线衍射等表征。晶体结构表明:配合物1和2结构相同,都属于三斜晶系,P1空间群。配合物中金属离子均采取九配位模式,金属离子被配体桥连形成一维双链结构,该一维双链被氢键和π-π作用连接成二维层状结构。  相似文献   

3.
在水热条件下利用H_2btpa配体合成了2个镧系金属配合物{[Ln(btpa)(H_2O)(OH)]·bpy}n(Ln=Tb(1),Pr(2),H2btpa=5-(3′,4′-二(四唑-5′-基)苯氧基)间苯二甲酸,bpy=4,4′-联吡啶),并用元素分析、红外光谱、X射线粉末衍射、X射线单晶衍射对其进行了表征。配合物1和2中,双核镧系金属单元通过btpa2-配体以μ4:η1,η2,η1,η2的配位模式连接,形成二维网状结构,客体分子4,4′-联吡啶通过分子间的氢键作用存在于结构中。相邻的二维网通过氢键的识别作用以锁链形式拓展为三维超分子结构。室温下配合物1呈现出TbⅢ的特征荧光发射峰。  相似文献   

4.
由2-(4’-羧基苯基)咪唑-4,5-二羧酸(HCPhIDC,C12H8N2O6,H4L)和稀土硝酸盐合成了两个稀土配合物[Ln(HCPhIDC)(H2O)2]·3H2O(Ln=Gd(1),Dy(2)),通过元素分析、红外光谱对其进行表征,用单晶X射线衍射方法测定了配合物的晶体结构。结构分析表明:两种晶体属于异质同晶型,同属于三斜晶系,空间群为P1,具有(3,6)-双节点的二维(43)(46·66·83)拓扑结构。测定了配体和配合物与EBDNA体系的作用,结果表明:配体本身对DNA的插入作用很强,而在与稀土离子形成配合物以后,其插入作用反而减弱,这是由于配体本身的分子结构具有良好的平面性,可以很好地插入到DNA的双螺旋结构中,当形成配合物后,整个分子的平面性反而降低了,从而导致插入作用减弱,因此猝灭常数大大降低。  相似文献   

5.
通过pH调控的水热法合成了2种配合物[Ag(H2btc)(bpy)](1)和[Cd(Hbtc)(bpy)(H2O)2]n(2)(H3btc=1,2,4-苯三甲酸,bpy=2,2′-联吡啶),并通过X射线单晶衍射、红外光谱、热重分析、荧光光谱进行了表征与性质研究。结果表明,配合物1为零维的单核小分子结构,配合物2为一维的链状结构。荧光研究表明,这2种配合物均具有荧光性质。  相似文献   

6.
采用水热法通过Ln2O3、Zn(CH3COO)2·2H2O与2,5-吡啶二羧酸为配体的反应合成出两个新型三维杂金属配位聚合物[Ln2Zn2(2,5-pydc)5(H2O)d·4H2O (Ln=Sm(1),Eu(2);2,5-pydc:2,5-吡啶二羧酸).通过元素分析、红外光谱、X射线粉未衍射方法以及X射线单晶衍射方法对配合物进行了表征.结构分析表明,配合物1和2的结构是相同的,其晶体均为单斜晶系,空间群为P21/C.配合物1和2中2,5-吡啶二羧酸配体共有两种配位方式.通过配位模式Ⅰ连接Ln和Zn形成二维层状结构;而层与层之间通过配位模式Ⅱ进一步连接起来形成三维复杂网状结构.此外,还对配合物的荧光性质和热分解过程进行了详细分析.荧光分析表明,金属Zn的引入有效增强了配合物中稀土金属的发光.  相似文献   

7.
孙长艳  李杨  李文军  车平 《无机化学学报》2013,29(10):2140-2144
由水热法合成了2个微孔镧系超分子配合物[Ln(CCA)(OH)(phen)(H2O)]n·n(phen)·nH2O(Ln=Yb,1;Er,2;H2CCA=2-羧基肉桂酸;phen=1,10-菲啰啉),并用元素分析、IR及X-射线单晶衍射对其进行了表征。晶体结构研究表明,2个配合物都是由配体2-羧基肉桂酸连接而形成的一维双链结构,该链状结构通过氢键和π-π堆积作用扩展为具有微孔结构的超分子。1,10-菲啰啉在微孔结构的形成过程中起到了模板剂的作用。  相似文献   

8.
用水热法合成了两种结构新颖的配合物[Cu(PDA)(H2O)2](Ⅰ)和[Ni(PZCA)2(H2O)2](Ⅱ)(H2PDA=2,6-吡啶-二甲酸,HPZCA=2-吡嗪羧酸);利用元素分析、红外光谱和X射线单晶衍射等分析了产物的组成和结构.结果表明,两种配合物均属单斜晶系,空间群均为P21/c,中心离子Cu(Ⅱ)和Ni(Ⅱ)均采取畸变的六配位八面体配位方式;配合物I通过π-π堆积作用和氢键构筑成三维结构,配合物Ⅱ以氢键联接形成二维层状结构.此外,配合物Ⅱ中的PZCA-来自于Ni(Ⅱ)对2,3-吡嗪-二羧酸(H2PZDA)配体的催化脱羧过程.  相似文献   

9.
以Sm(NO3)3·6H2O、Dy(NO3)3·6H2O、吡啶-2,5-二羧酸(H2pydc)为原料,用水热合成法合成了2个新的稀土金属配合物[Ln(pydc)2(H2O)5]·4H2O(Ln=Sm(1),Dy(2)),单晶结构经X单晶衍射仪分析确定,两种配合物的晶系均为单斜晶系,C2/c空间群。对晶体的性质进行元素分析、热重、红外光谱,荧光等分析。结果表明,配合物1和2在常温下表现出稀土离子相应的特征荧光发射。另外,本文对两种配合物进行了热稳定性及动力学分析。  相似文献   

10.
水热法合成了2个基于柔性的1,4-苯二硫乙酸(H2L)和刚性的2,2′-联吡啶(2,2′-bipy)配体的Co(Ⅱ)配合物:{[CoL(2,2′-bipy)(H2O)].0.40H2O}n(1)和[CoL(2,2′-bipy)(H2O)2]n(2),并通过元素分析,红外光谱,热重和X-射线单晶衍射实验对其结构进行了表征。分析表明,两个配合物都是通过氢键连接一维链形成的二维层面结构。对配合物的电化学性质进行了研究,表明两个配合物有相似的电化学行为。  相似文献   

11.
Lanthanide coordination polymers {[Ln(PTMTC)(EtOH)2H2O] ? x H2O, y EtOH} [Ln=Tb ( 1 ), Gd ( 2 ), and Eu ( 3 )] and {[Ln(αH? PTMTC)(EtOH)2H2O] ? x H2O, y EtOH} [Ln=Tb ( 1′ ), Gd ( 2′ ), and Eu ( 3′ )] have been prepared by reacting LnIII ions with tricarboxylate‐perchlorotriphenylmethyl/methane ligands that have a radical (PTMTC3?) or closed‐shell (αH? PTMTC3?) character, respectively. X‐ray diffraction analyses reveal 3D architectures that combine helical 1D channels and a fairly rare (6,3) connectivity described with the (42.8)?(44.62.85.104) Schäfli symbol. Such 3D architectures make these polymers porous solids upon departure of the non‐coordinated guest‐solvent molecules as confirmed by the XRD structure of the guest‐free [Tb(PTMTC)(EtOH)2H2O] and [Tb(αH? PTMTC)(EtOH)2H2O] materials. Accessible voids represent 40 % of the cell volume. Metal‐centered luminescence was observed in TbIII and EuIII coordination polymers 1′ and 3′ , although the LnIII‐ion luminescence was quenched when radical ligands were involved. The magnetic properties of all these compounds were investigated, and the nature of the {Ln–radical} (in 1 and 2 ) and the {radical–radical} exchange interactions (in 3 ) were assessed by comparing the behaviors for the radical‐based coordination polymers 1 – 3 with those of the compounds with the diamagnetic ligand set. Whilst antiferromagnetic {radical–radical} interactions were found in 3 , ferromagnetic {Ln–radical} interactions propagated in the 3D architectures of 1 and 2 .  相似文献   

12.
ZnII and CdII coordination polymers with dicarboxylate and imidazole‐containing ligands, namely, [Cd (2,3‐PDC)(L)]n ( 1 ) and {[Zn(3,4‐PDC) (L)0.5] · H2O}n ( 2 ), [2,3‐H2PDC = 2,3‐pyridine dicarboxylate, 3,4‐H2PDC = 3,4‐pyridine dicarboxylate, and L = 1,4‐bis(2‐methylimidazol‐3‐ium‐1‐yl)biphenyl], were prepared and characterized by elemental analysis, IR spectroscopy, and X‐ray diffraction. Complex 1 shows a three‐dimensional (3D) structure with threefold interpenetrating diamond topology. Complex 2 features a 3D framework with twofold interpenetrating dmc topology. Moreover, the luminescent properties of complexes 1 and 2 were also investigated.  相似文献   

13.
Lanthanide coordination polymers with the formula [Ln(pydc)2]·H2O (Ln = La, 1 ; Nd, 2 ; pydc = 3,4‐pyridinedicarboxylate) and [Ln(pydc)(ina)(H2O)2] (Ln = Sm, 3 ; Eu, 4 ; Tb, 5 ; Dy, 6 ; pydc = 3,4‐pyridinedicarboxylate, ina = isonicotinate) were synthesized by treating LnIII nitrates with 3,4‐pyridinedicarboxylic acid under hydrothermal conditions. Single‐crystal and powder X‐ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. The lighter lanthanide compounds 1 and 2 consist of extended two‐dimensional layer structures with the thickness of ca. 1.7 nm. While the heavier lanthanide compounds 3 ‐ 6 have pydc‐bridged double chain structures with one chelating carboxylate group of ina ligand and two water molecules on each metal center. Interestingly, decarboxylation occurred and pydc was partially transformed into ina in the hydrothermal reactions of 3 ‐ 6 . The fluorescence activities of compounds 4 and 5 are reported.  相似文献   

14.
A new triazine‐cored tricarboxylic acid, N,N′,N“‐1,3,5‐triazine‐2,4,6‐triyltris(cis‐4‐aminocyclohexane‐carboxylic acid) (H3L), has been prepared by replacing the chlorine atoms of cyanuric chloride with cis‐4‐aminocyclohexane‐carboxylic acid, which has been used for the construction of a series of triazine‐cored lanthanide‐based metal–organic frameworks (MOFs). All these MOFs were structurally authenticated, revealing that they are isostructural and exist as two‐dimensional (2D) coordination networks with the general formula [Ln(L)(H2O)2]?5.5 H2O (Ln= 1?Gd , 2?Tb , 3?Eu ). A unique one‐dimensional water chain, composed of primary tetrameric cyclic rings and dodecameric cyclic rings, has been found entrapped in the lattice. Moreover, all these compounds display bright characteristic photoluminescence. Particularly, for 1 , apart from the strong blue emission peak (Φf=20.6 %) corresponding to the intraligand transition under near‐UV excitation, the characteristic emissions of Gd3+ cation (Φf=5.0 %) were unexpectedly observed upon excitation at 273 nm.  相似文献   

15.
A series of Ln–Ni heterometallic coordination polymers, {[Ln2Ni(MIDA)4(H2O)6](H2O)4} (Ln = La ( 1 ), Ce ( 2 ), Pr ( 3 ), and Nd ( 4 ); H2MIDA = N‐methyl‐iminodiacetic acid), were obtained under hydrothermal conditions. Single crystal X‐ray diffraction revealed that they feature two‐dimensional isomorphic frameworks, which could be viewed as the construction by one‐dimensional {Ln}n chain connecting by bridges of [Ni(MIDA)2]2. The magnetic measurements reveal that compounds 2 – 4 exhibit antiferromagnetic properties. TGA results indicate compounds 1 and 4 have good thermostability with the critical temperature of 375 °C.  相似文献   

16.
Three novel lanthanide coordination polymers {[Ce2(HOnic)4(Onic)2(H2O)2]·6H2O}n ( 1 ), {[Ln(HOnic)(Onic)‐ (H2O)5·(HOnicH)]·H2O}n [HOnicH=6‐hydroxynicotinic acid, Ln=Nd ( 2 ), Pr ( 3 )] have been synthesized and characterized by elemental analyses, IR spectrum and single crystal X‐ray diffraction. Structure analyses reveal that 1 features a 2D plane structure while compounds 2 and 3 possess a 1D chain‐like polymeric structure. TG analyses indicate that 1 exhibits higher thermostability than 2 and 3 , which was attributed to the layer polymeric structure of 1 .  相似文献   

17.
Two new CdII complexes, [Cd( ces )(phen)] ( 1 ) and {[Cd( ces )(bpy)(H2O)](H2O)}2 ( 2 ), were prepared by slow solvent evaporation methods from mixtures of cis‐epoxysuccinic acid and Cd(ClO4)2 · 6H2O in the presence of phen or bpy co‐ligand ( ces = cis‐epoxysuccinate, phen = 1,10‐phenanthroline, and bpy = 2,2′‐bipyridine). Single‐crystal X‐ray diffraction analyses show that complex 1 has a one‐dimensional (1D) helical chain that is further assembled into a two‐dimensional (2D) sheet, and then an overall three‐dimensional (3D) network by the interchain C–H ··· O hydrogen bonds. Complex 2 features a dinuclear structure, which is further interlinked into a 3D supramolecular network by the co‐effects of intermolecular C–H ··· O and C–H ··· π hydrogen bonds as well as π ··· π stacking interactions. The structural differences between 1 and 2 are attributable to the intervention of different 2,2′‐bipyridyl‐like co‐ligands. Moreover, 1 and 2 exhibit intense solid‐state luminescence at room temperature, which mainly originates from the intraligand π→π* transitions of aromatic co‐ligands.  相似文献   

18.
Framework‐isomeric three‐dimensional (3D) Cd–Ln heterometallic metal–organic frameworks (HMOFs), {[Ln2(ODA)6Cd3(H2O)6] ? 6 H2O}n (Ln=Gd ( 1 a ) and Tb ( 1 b ), ODA=oxydiacetic acid) and {[Cd(H2O)6] ? [Ln2(ODA)6Cd2] ? H2O}n (Ln=Gd ( 2 a ), Tb ( 2 b )), with neutral and anionic pores, respectively, were designed based on a lanthanide metalloligand strategy and synthesized by using a stepwise assembly and a hydrothermal method. Luminescence studies revealed that 1 b and 2 b can act as luminescent metal–organic frameworks and their light‐emitting properties can be modulated by small guest molecules and the manganese counterion, respectively.  相似文献   

19.
Four new compounds based on H2BDC and PyBIm [H2BDC = 1,4‐benzenedicarboxylatic acid, PyBIm = 2‐(4‐pyridyl)benzimidazole], (PyBIm)(H2BDC)0.5 ( 1 ), Co(PyBIm)2(HBDC)(BDC)0.5 ( 2 ), Ni(PyBIm)2(HBDC)(BDC)0.5 ( 3 ), and Zn(BDC)(PyBIm) · H2O ( 4 ), were synthesized by hydrothermal methods and characterized by X‐ray diffraction. Compound 1 contains two types of hydrogen bonding N–H ··· N and O–H ··· N, which connect the molecules into a two‐dimensional (2D) layer. Complex 2 crystallizes isostructural to 3 in triclinic space group P$\bar{1}$ , in 1D chains. The hydrogen‐bonding interactions between uncoordinated N, N–H and COOH groups in 2 connect the 1D chains into a 2D layer. Complex 4 displays a 1D structure, which is finally extended to a 3D supramolecular framework by hydrogen bonding and π–π packing interactions. The magnetic properties of compounds 2 and 3 were studied as well.  相似文献   

20.
Reactions of Cd(NO3)2 · 4H2O with 2‐quinolinecarboxylic acid (H‐QLC) in the presence of 1,4‐benzenedicarboxylic acid (H2‐BDC) or 1,3,5‐benzenetricarboxylic acid (H‐BTC) in DMF/H2O solvent afforded two compounds, namely, [Cd(QLC)(BDC)1/2(H2O)]n ( 1 ) and [Cd(QLC)(BTC)1/3]n ( 2 ). Both compounds are two‐dimensional (2D) frameworks but feature different cadmium‐carboxylate clusters as a result of the presence of the polycarboxylate ligands with different geometries and coordination preference. The dinuclear Cd2(QLC)2 units in 1 are bridged by the pairs of bridging water ligands to give a one‐dimensional (1D) chain, which is further linked by the second ligand of BDC2– to form a 2D structure. Compound 2 is constructed from unique hexanuclear macrometallacyclic Cd6(QLC)6 clusters, which are linked by the surrounding BTC3– ligands to generate a 2D structure. Photoluminescence studies showed both compounds exhibit ligand‐centered luminescent emissions with emission maxima at 405 and 401 nm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号